Purpose: Due to the highly individualized clinical manifestation of Parkinson's disease (PD), personalized patient care may require domain-specific assessment of neurological disability. Evidence from magnetic resonance imaging (MRI) studies has proposed that heterogenous clinical manifestation corresponds to heterogeneous cortical disease burden, suggesting customized, high-resolution assessment of cortical pathology as a candidate biomarker for domain-specific assessment.
Method: Herein, we investigate the potential of the recently proposed Mosaic Approach (MAP), a normative framework for quantifying individual cortical disease burden with respect to a population-representative cohort, in predicting domain-specific clinical progression. Using MRI and clinical data from 135 recently diagnosed PD patients from the Parkinson's Progression Markers Initiative, we first defined an extremity-specific motor score. We then identified cortical regions corresponding to "extremity functions" and restricted MAP, respectively, and contrasted the explanatory power of the extremity-specific MAP to unrestricted MAP. As control conditions, domain-related but less specific general motor function and nondomain-specific cognitive scores were considered. We also tested the predictive power of the restricted MAP in predicting disease progression over 1 and 3 years using support vector machines. The restricted, extremity-specific MAP yielded higher explanatory power for extremity-specific motor function at baseline as opposed to the unrestricted, whole-brain MAP. On the contrary, for general motor function, the unrestricted, whole-brain MAP yielded higher power.
Finding: No associations were found for cognitive function. The extremity-specific MAP predicted extremity-specific motor progression over 1 and 3 years above chance level. The MAP framework allows for domain-specific prediction of customized PD disease progression, which can inform machine learning, thereby contributing to personalized PD patient care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/brb3.70289 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!