This study introduces a sustainable biological approach for synthesizing silver nanoparticles (AgNPs) using Conocarpus seeds, aimed at improving the adsorption and photocatalytic degradation of methylene blue (MB) in wastewater treatment. The photocatalytic efficiency of AgNPs, synthesized under varying concentrations of silver nitrate (AgNO) and pH levels, was evaluated, together with the effectiveness of a photocatalytic reactor. The synthesized samples were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, and atomic force microscopy (AFM). Results showed that MB degradation occurred quickly within the first 50 min, achieving a 99.60% removal efficiency adsorption and photocatalytic degradation under optimal conditions (pH = 3, 1 g sample) after 1 h. The maximum adsorption capacity reached 49.80 mg·g. Furthermore, the AgNPs demonstrated a significant degradation rate of 99.76% within 2 h under UV light, highlighting the synergistic effects of AgNPs in enhancing both adsorption and photocatalysis. This study not only accentuates the potential of Conocarpus seeds as an eco-friendly precursor for AgNP synthesis but also highlights the applicability of AgNPs in wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226514.2025.2450834DOI Listing

Publication Analysis

Top Keywords

conocarpus seeds
12
silver nanoparticles
8
methylene blue
8
adsorption photocatalytic
8
photocatalytic degradation
8
wastewater treatment
8
agnps
5
sustainable synthesis
4
synthesis silver
4
nanoparticles conocarpus
4

Similar Publications

This study introduces a sustainable biological approach for synthesizing silver nanoparticles (AgNPs) using Conocarpus seeds, aimed at improving the adsorption and photocatalytic degradation of methylene blue (MB) in wastewater treatment. The photocatalytic efficiency of AgNPs, synthesized under varying concentrations of silver nitrate (AgNO) and pH levels, was evaluated, together with the effectiveness of a photocatalytic reactor. The synthesized samples were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, and atomic force microscopy (AFM).

View Article and Find Full Text PDF

Several previous studies concerned of microbial fuel cells integrated into constructed wetlands, nevertheless, their application as a convenient treatment for wastewater is still developing. In this experimental investigation, five CW-MFC systems were similarly designed, setup, and operated in a batch mode for two subsequent cycles. Each cycle lasted for 10 days to evaluate the performance of CW-MFC system for the remediation of real leather tannery wastewater (LTW).

View Article and Find Full Text PDF

Cationic and anionic detergent buffers in sequence yield high-quality genomic DNA from diverse plant species.

Anal Biochem

January 2024

Khalifa Center for Genetic Engineering and Biotechnology, Affiliated with United Arab Emirates University, The Presidential Court, United Arab Emirates; Department of Biology, College of Science, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates. Electronic address:

Because of the heterogeneity among seedlings of outbreeding species, the use of seedling tissues as a source of DNA is unsuitable for the genomic characterization of elite germplasms. High-quality DNA, free of RNA, proteins, polysaccharides, secondary metabolites, and shearing, is mandatory for downstream molecular biology applications, especially for next-generation genome sequencing and pangenome analysis aiming to capture the complete genetic diversity within a species. The study aimed to accomplish an efficient protocol for the extraction of high-quality DNA suitable for diverse plant species/tissues.

View Article and Find Full Text PDF

Background: High-purity RNA serves as the basic requirement for downstream molecular analysis of plant species, especially the differential expression of genes to various biotic and abiotic stimuli. But, the extraction of high-quality RNA is usually difficult from plants rich in polysaccharides and polyphenols, and their presence usually interferes with the downstream applications. The aim of the study is to optimize the extraction of high-quality RNA from diverse plant species/tissues useful for downstream molecular applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!