Single-cell RNA-sequencing (scRNA-seq) is a powerful method to comprehensively overlook gene expression profiles of individual cells in various tissues, providing fundamental datasets for classification of cell types and further functional analyses. Here we adopted scRNA-seq analysis for the zebrafish olfactory sensory neurons which respond to water-borne odorants and pheromones to elicit various behaviors crucial for survival and species preservation. Firstly, a single-cell dissociation procedure of the zebrafish olfactory rosettes was optimized by using cold-active protease, minimizing artifactual neuronal activation. Secondly, various cell types were classified into distinct clusters, based on the expressions of well-defined marker genes. Notably, we validated non-overlapping expressions of different families of olfactory receptors among the clusters of olfactory sensory neurons. Lastly, we succeeded in estimating candidate olfactory receptors responding to a particular odor stimulus by carefully scrutinizing correlated expressions of immediate early genes. Thus, scRNA-seq is a useful measure for the analysis of olfactory sensory neurons not only in classifying functional cell types but also in identifying olfactory receptor genes for given odorants and pheromones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gtc.13191 | DOI Listing |
Genes Cells
January 2025
Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, Saitama, Japan.
Single-cell RNA-sequencing (scRNA-seq) is a powerful method to comprehensively overlook gene expression profiles of individual cells in various tissues, providing fundamental datasets for classification of cell types and further functional analyses. Here we adopted scRNA-seq analysis for the zebrafish olfactory sensory neurons which respond to water-borne odorants and pheromones to elicit various behaviors crucial for survival and species preservation. Firstly, a single-cell dissociation procedure of the zebrafish olfactory rosettes was optimized by using cold-active protease, minimizing artifactual neuronal activation.
View Article and Find Full Text PDFEnviron Res
January 2025
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China. Electronic address:
Hygienic insecticides are applied directly to the living environment and are closely related to human life. Dimefluthrin (DIM) is one of the most widely used hygienic insecticides globally. However, with increasing mosquito resistance, both the concentration and duration of DIM usage have risen, prompting public concerns regarding its neurotoxic risks, especially for immunocompromised children.
View Article and Find Full Text PDFElife
December 2024
Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France.
Despite recent progress, the complex roles played by the extracellular matrix in development and disease are still far from being fully understood. Here, we took advantage of the zebrafish mutation which affects Laminin γ1, a major component of basement membranes, to explore its role in the development of the olfactory system. Following a detailed characterisation of Laminin distribution in the developing olfactory circuit, we analysed basement membrane integrity, olfactory placode and brain morphogenesis, and olfactory axon development in mutants, using a combination of immunochemistry, electron microscopy and quantitative live imaging of cell movements and axon behaviours.
View Article and Find Full Text PDFbioRxiv
November 2024
Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland.
bioRxiv
November 2024
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921.
The sense of smell is generated by electrical currents that are influenced by the concentration of ions in olfactory sensory neurons and mucus. In contrast to the extensive morphological and molecular characterization of sensory neurons, there has been little description of the cells that control ion concentrations in the zebrafish olfactory system. Here, we report the molecular and ultrastructural characterization of zebrafish olfactory ionocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!