Single-cell RNA-sequencing (scRNA-seq) is a powerful method to comprehensively overlook gene expression profiles of individual cells in various tissues, providing fundamental datasets for classification of cell types and further functional analyses. Here we adopted scRNA-seq analysis for the zebrafish olfactory sensory neurons which respond to water-borne odorants and pheromones to elicit various behaviors crucial for survival and species preservation. Firstly, a single-cell dissociation procedure of the zebrafish olfactory rosettes was optimized by using cold-active protease, minimizing artifactual neuronal activation. Secondly, various cell types were classified into distinct clusters, based on the expressions of well-defined marker genes. Notably, we validated non-overlapping expressions of different families of olfactory receptors among the clusters of olfactory sensory neurons. Lastly, we succeeded in estimating candidate olfactory receptors responding to a particular odor stimulus by carefully scrutinizing correlated expressions of immediate early genes. Thus, scRNA-seq is a useful measure for the analysis of olfactory sensory neurons not only in classifying functional cell types but also in identifying olfactory receptor genes for given odorants and pheromones.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gtc.13191DOI Listing

Publication Analysis

Top Keywords

zebrafish olfactory
12
olfactory receptors
12
cell types
12
olfactory sensory
12
sensory neurons
12
olfactory
9
single-cell rna-sequencing
8
candidate olfactory
8
odorants pheromones
8
rna-sequencing zebrafish
4

Similar Publications

Single-cell RNA-sequencing (scRNA-seq) is a powerful method to comprehensively overlook gene expression profiles of individual cells in various tissues, providing fundamental datasets for classification of cell types and further functional analyses. Here we adopted scRNA-seq analysis for the zebrafish olfactory sensory neurons which respond to water-borne odorants and pheromones to elicit various behaviors crucial for survival and species preservation. Firstly, a single-cell dissociation procedure of the zebrafish olfactory rosettes was optimized by using cold-active protease, minimizing artifactual neuronal activation.

View Article and Find Full Text PDF

Hygienic insecticides are applied directly to the living environment and are closely related to human life. Dimefluthrin (DIM) is one of the most widely used hygienic insecticides globally. However, with increasing mosquito resistance, both the concentration and duration of DIM usage have risen, prompting public concerns regarding its neurotoxic risks, especially for immunocompromised children.

View Article and Find Full Text PDF

Despite recent progress, the complex roles played by the extracellular matrix in development and disease are still far from being fully understood. Here, we took advantage of the zebrafish mutation which affects Laminin γ1, a major component of basement membranes, to explore its role in the development of the olfactory system. Following a detailed characterisation of Laminin distribution in the developing olfactory circuit, we analysed basement membrane integrity, olfactory placode and brain morphogenesis, and olfactory axon development in mutants, using a combination of immunochemistry, electron microscopy and quantitative live imaging of cell movements and axon behaviours.

View Article and Find Full Text PDF
Article Synopsis
  • Higher brain functions rely on how experiences shape information representation, potentially organized through attractor dynamics or changes in neural manifolds.
  • Research on zebrafish's olfactory responses showed that instead of attractor dynamics, training improved the differentiation of neural representations for relevant odors, in line with autoassociative network models.
  • The geometry of these neural manifolds was crucial for classifying sensory information and predicting odor discrimination, indicating that areas like pDp might encode information in a way that supports both sensory and meaningful learning.
View Article and Find Full Text PDF

The sense of smell is generated by electrical currents that are influenced by the concentration of ions in olfactory sensory neurons and mucus. In contrast to the extensive morphological and molecular characterization of sensory neurons, there has been little description of the cells that control ion concentrations in the zebrafish olfactory system. Here, we report the molecular and ultrastructural characterization of zebrafish olfactory ionocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!