SARS-CoV-2 infections led to a worldwide pandemic in 2020. As of 2024, therapeutics against SARS-CoV-2 have continued to be desirable. NSP14 is a dual-function methyltransferase (MTase) and exonuclease (ExoN) with key roles in SARS-CoV-2 genome propagation and host immune system evasion. In this work, we developed high-throughput screening (HTS) assays for NSP14 MTase and ExoN activities. We screened both activities against a collection of 40,664 compounds. A total of 1677 initial hit compounds were identified, cherrypicked, counterscreened for assay interference, and screened for off-target selectivity. We identified 396 and 174 high-quality hits against the MTase and ExoN activities, respectively. Along with inhibitors for individual activities, we identified dual-activity inhibitors, including a novel inhibitor that is not competitive with any substrate and interacts with a putative allosteric binding site. This study represents the largest published screen of SARS-CoV-2 NSP14 MTase and ExoN activities to date and culminates in a pipeline for the NSP14 drug discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.4c00490DOI Listing

Publication Analysis

Top Keywords

mtase exon
12
exon activities
12
high-throughput screening
8
sars-cov-2 nsp14
8
nsp14 mtase
8
sars-cov-2
5
nsp14
5
activities
5
screening pipeline
4
pipeline identify
4

Similar Publications

A High-Throughput Screening Pipeline to Identify Methyltransferase and Exonuclease Inhibitors of SARS-CoV-2 NSP14.

Biochemistry

January 2025

National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States.

SARS-CoV-2 infections led to a worldwide pandemic in 2020. As of 2024, therapeutics against SARS-CoV-2 have continued to be desirable. NSP14 is a dual-function methyltransferase (MTase) and exonuclease (ExoN) with key roles in SARS-CoV-2 genome propagation and host immune system evasion.

View Article and Find Full Text PDF

SARS coronavirus 2 (SARS-CoV-2) non-structural protein 14 (Nsp14) possesses an N-terminal exonuclease (ExoN) domain that provides a proofreading function for the viral RNA-dependent RNA polymerase and a C-terminal N7-methyltransferase (N7-MTase) domain that methylates viral mRNA caps. Nsp14 also modulates host functions. This includes the activation of NF-κB and downregulation of interferon alpha/beta receptor 1 (IFNAR1).

View Article and Find Full Text PDF
Article Synopsis
  • The development of antiviral drugs for SARS-CoV-2 is essential due to limited treatment options and the possibility of reinfection after vaccination.
  • Two key viral targets for drug development are the 3'-5' exoribonuclease (ExoN) and the 2'-O-methyltransferase (2'-O-MTase), which are crucial for the virus's survival.
  • The study utilizes target-directed dynamic combinatorial chemistry (tdDCC) to find compounds that inhibit the interactions of essential viral proteins, resulting in a new class of inhibitors that show antiviral activity against coronaviruses.
View Article and Find Full Text PDF

New insights into complex formation by SARS-CoV-2 nsp10 and nsp14.

Nucleosides Nucleotides Nucleic Acids

November 2024

Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Lund, Sweden.

Article Synopsis
  • SARS-CoV-2 non-structural protein 10 (nsp10) is crucial for activating the enzymatic functions of nsp14 and nsp16, helping the virus improve its resistance to antiviral drugs and evade the immune system.
  • Nsp14 has dual functions, including proofreading viral RNA and adding a protective cap, while nsp10 facilitates these activities through specific binding with varying truncations affecting its functionality.
  • Research utilized advanced techniques to reveal that the full structure of nsp10 enhances its interaction with nsp14, demonstrating complex dynamics not fully observable by traditional methods like X-ray crystallography.
View Article and Find Full Text PDF

Development of Pan-Anti-SARS-CoV-2 Agents through Allosteric Inhibition of nsp14/nsp10 Complex.

ACS Infect Dis

March 2024

Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong 999077, P. R. China.

SARS-CoV-2 nsp14 functions both as an exoribonuclease (ExoN) together with its critical cofactor nsp10 and as an -adenosyl methionine-dependent (guanine-N7) methyltransferase (MTase), which makes it an attractive target for the development of pan-anti-SARS-CoV-2 drugs. Herein, we screened a panel of compounds (and drugs) and found that certain compounds, especially Bi(III)-based compounds, could allosterically inhibit both MTase and ExoN activities of nsp14 potently. We further demonstrated that Bi(III) binds to both nsp14 and nsp10, resulting in the release of Zn(II) ions from the enzymes as well as alternation of protein quaternary structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!