Antimatter in astronomy and cosmology: the early history.

Ann Sci

Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark.

Published: January 2025

So-called antimatter in the form of elementary particles such as positive electrons (antielectrons alias positrons) and negative protons (antiprotons) has for long been investigated by physicists. However, atoms or molecules of this exotic kind are conspicuously absent from nature. Since antimatter is believed to be symmetric with ordinary matter, the flagrant asymmetry constitutes a problem that still worries physicists and cosmologists. As first suggested by Paul Dirac in 1933, in distant parts of the universe there might be entire stars and galaxies made of antiparticles alone. Why not? This paper examines how the concepts of antiparticles and antimatter slowly migrated from particle physics to astronomy and cosmology. At around 1970 a few physicists speculated about an anti-universe separate from ours while others looked for the charge asymmetry in quantum processes in the early big-bang explosion of the universe. Others again proposed a 'plasma cosmology' that kept our world and the hypothetical world of antimatter apart. Soviet physicists and astronomers were no less interested in the problem than their colleagues in the West. The paper details the development up to the late 1970s, paying attention not only to mainstream scientific works but also to more speculative ideas, some of them very speculative. By that time the antimatter mystery remained mysterious - which is still the situation.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00033790.2025.2449861DOI Listing

Publication Analysis

Top Keywords

astronomy cosmology
8
antimatter
6
antimatter astronomy
4
cosmology early
4
early history
4
history so-called
4
so-called antimatter
4
antimatter form
4
form elementary
4
elementary particles
4

Similar Publications

Antimatter in astronomy and cosmology: the early history.

Ann Sci

January 2025

Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark.

So-called antimatter in the form of elementary particles such as positive electrons (antielectrons alias positrons) and negative protons (antiprotons) has for long been investigated by physicists. However, atoms or molecules of this exotic kind are conspicuously absent from nature. Since antimatter is believed to be symmetric with ordinary matter, the flagrant asymmetry constitutes a problem that still worries physicists and cosmologists.

View Article and Find Full Text PDF

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Understanding the values and origin of fundamental physical constants, one of the grandest challenges in modern science, has been discussed in particle physics, astronomy and cosmology. More recently, it was realized that fundamental constants have a biofriendly window set by life processes involving motion and flow. This window is related to intrinsic fluid properties such as energy and length scales in condensed matter set by fundamental constants.

View Article and Find Full Text PDF

The Cryogenic Underground Observatory for Rare Events (CUORE) is a detector array comprised by 988 5  cm×5  cm×5  cm TeO_{2} crystals held below 20 mK, primarily searching for neutrinoless double-beta decay in ^{130}Te. Unprecedented in size among cryogenic calorimetric experiments, CUORE provides a promising setting for the study of exotic throughgoing particles. Using the first tonne year of CUORE's exposure, we perform a search for hypothesized fractionally charged particles (FCPs), which are well-motivated by various standard model extensions and would have suppressed interactions with matter.

View Article and Find Full Text PDF
Article Synopsis
  • Fast radio bursts (FRBs) are brief bursts of radio waves from distant galaxies, and their emission mechanisms are still debated, focusing on processes near a central engine versus shocks at large distances.
  • Researchers measured two scintillation scales for FRB 20221022A, one linked to the Milky Way and the other to its host galaxy, which allowed them to determine the FRB's emission region size to be less than 3 x 10 kilometers.
  • This size contradicts the large-distance model and suggests that the emission likely occurs close to a central compact object, supported by an observed S-shaped polarization angle, indicating a magnetospheric emission process.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!