To address a wide range of genetic diseases, genome editing tools that can achieve targeted delivery of large genes without causing double-strand breaks (DSBs) or requiring DNA templates are necessary. Here, we introduce CRISPR-Enabled Autonomous Transposable Element (CREATE), a genome editing system that combines the programmability and precision of CRISPR/Cas9 with the RNA-mediated gene insertion capabilities of the human LINE-1 (L1) element. CREATE employs a modified L1 mRNA to carry a payload gene, and a Cas9 nickase to facilitate targeted editing by L1-mediated reverse transcription and integration without relying on DSBs or DNA templates. Using this system, we demonstrate programmable insertion of a 1.1 kb gene expression cassette into specific genomic loci of human cell lines and primary T cells. Mechanistic studies reveal that CREATE editing is highly specific with no observed off-target events. Together, these findings establish CREATE as a programmable, RNA-based gene delivery technology with broad therapeutic potential.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s44319-024-00364-7DOI Listing

Publication Analysis

Top Keywords

element create
12
crispr-enabled autonomous
8
autonomous transposable
8
transposable element
8
rna-based gene
8
genome editing
8
dna templates
8
create
5
gene
5
editing
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!