Cancer vaccines: platforms and current progress.

Mol Biomed

Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.

Published: January 2025

Cancer vaccines, crucial in the immunotherapeutic landscape, are bifurcated into preventive and therapeutic types, both integral to combating oncogenesis. Preventive cancer vaccines, like those against HPV and HBV, reduce the incidence of virus-associated cancers, while therapeutic cancer vaccines aim to activate dendritic cells and cytotoxic T lymphocytes for durable anti-tumor immunity. Recent advancements in vaccine platforms, such as synthetic peptides, mRNA, DNA, cellular, and nano-vaccines, have enhanced antigen presentation and immune activation. Despite the US Food and Drug Administration approval for several vaccines, the full therapeutic potential remains unrealized due to challenges such as antigen selection, tumor-mediated immunosuppression, and optimization of delivery systems. This review provides a comprehensive analysis of the aims and implications of preventive and therapeutic cancer vaccine, the innovative discovery of neoantigens enhancing vaccine specificity, and the latest strides in vaccine delivery platforms. It also critically evaluates the role of adjuvants in enhancing immunogenicity and mitigating the immunosuppressive tumor microenvironment. The review further examines the synergistic potential of combining cancer vaccines with other therapies, such as chemotherapy, radiotherapy, and immune checkpoint inhibitors, to improve therapeutic outcomes. Overcoming barriers such as effective antigen identification, immunosuppressive microenvironments, and adverse effects is critical for advancing vaccine development. By addressing these challenges, cancer vaccines can offer significant improvements in patient outcomes and broaden the scope of personalized cancer immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s43556-024-00241-8DOI Listing

Publication Analysis

Top Keywords

cancer vaccines
24
cancer
8
preventive therapeutic
8
therapeutic cancer
8
vaccines
6
therapeutic
5
vaccine
5
vaccines platforms
4
platforms current
4
current progress
4

Similar Publications

Respiratory syncytial virus (RSV) causes a substantial health burden among infants and older adults. Prefusion F protein-based vaccines have shown high efficacy against RSV disease in clinical trials, offering promise for mitigating this burden through maternal and older adult immunization. Employing an individual-based model, we evaluated the impact of RSV vaccination on hospitalizations and deaths in 13 high-income countries, assuming that the vaccine does not prevent infection or transmission.

View Article and Find Full Text PDF

Continuously emerging SARS-CoV-2 Omicron subvariants pose a threat thwarting the effectiveness of approved COVID-19 vaccines. Especially, the protection breadth and degree of these vaccines against antigenically distant Omicron subvariants is unclear. Here, we report the immunogenicity and efficacy of a bivalent mRNA vaccine, PTX-COVID19-M1.

View Article and Find Full Text PDF

Cancer vaccines: platforms and current progress.

Mol Biomed

January 2025

Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.

Cancer vaccines, crucial in the immunotherapeutic landscape, are bifurcated into preventive and therapeutic types, both integral to combating oncogenesis. Preventive cancer vaccines, like those against HPV and HBV, reduce the incidence of virus-associated cancers, while therapeutic cancer vaccines aim to activate dendritic cells and cytotoxic T lymphocytes for durable anti-tumor immunity. Recent advancements in vaccine platforms, such as synthetic peptides, mRNA, DNA, cellular, and nano-vaccines, have enhanced antigen presentation and immune activation.

View Article and Find Full Text PDF

In Silico-Guided Discovery of Polysaccharide Derivatives as Adjuvants in Nanoparticle Vaccines for Cancer Immunotherapy.

ACS Nano

January 2025

National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China.

Cancer vaccines utilizing nanoparticle (NP) structures that integrate antigens and adjuvants to enhance delivery and stimulate immune responses are emerging as a promising avenue in cancer immunotherapy. However, the development of cancer vaccines has been significantly hindered by the low immunogenicity of tumor antigens. To address this challenge, substantial efforts have been made in developing innovative adjuvants to elicit effective immune responses.

View Article and Find Full Text PDF

An in vitro nanocarrier-based B cell antigen loading system; tumor growth suppression via transfusion of the antigen-loaded B cells in vivo.

Int J Pharm

January 2025

Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Innovative Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University, 770-8505 Tokushima, Japan. Electronic address:

B cell-based vaccines are expected to provide an alternative to DC-based vaccines. However, the efficacy of antigen uptake by B cells in vitro is relatively low, and efficient antigen-loading methods must be established before B cell-based vaccines are viable in clinical settings. We recently developed an in vitro system that efficiently loads antigens into isolated splenic B cells via liposomes decorated with hydroxyl PEG (HO-PEG-Lips).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!