This study focuses on the synthesis of a novel Cerium-Magnesium (CeO-MgO) binary oxide nanomaterials by a simple co-precipitation process and used to remove harmful pollutants such as Cr(VI), Cu(II), and F. The morphology, phase, crystallite size, thermal stability, functional groups, surface area, and porosity of the synthesized nanomaterial were determined by using XRD, SEM, FTIR, TGA/DTA, and BET studies. The prepared nanomaterials showed adsorption selectivity of Cu(II) ≈ F> Cr(VI) with a high adsorption capacity of 84.3 - 133.3 mg/g for Cu(II), Cr(VI), and F. The distribution coefficient (K) for F and Cu(II) was found to be in the range of 10 mL/g which was adequate. The adsorption isotherms for Cr(VI), Cu(II), and F followed the Freundlich isotherm model and the pseudo-second-order kinetic model in linear and nonlinear forms, indicated multilayer adsorption. Maximum removal of Cr(VI), Cu(II), and F ions was found to be 92.84%, 98.88%, and 95%, respectively, for a high initial concentration of 50 mg/l by 2 g/l dosages of prepared CeO-MgO binary oxide nanomaterials employed as an adsorbent in this study. The results showed that novel CeO-MgO binary oxide nanomaterials are promising adsorbent for removing hazardous inorganic contaminants from the water due to their adsorption capability and chemical stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-78830-4 | DOI Listing |
Sci Rep
January 2025
Department of Physics, Faculty of Science, Islamic University of Madinah, Al-Jamia, Madinah, 42351, Saudi Arabia.
This study focuses on the synthesis of a novel Cerium-Magnesium (CeO-MgO) binary oxide nanomaterials by a simple co-precipitation process and used to remove harmful pollutants such as Cr(VI), Cu(II), and F. The morphology, phase, crystallite size, thermal stability, functional groups, surface area, and porosity of the synthesized nanomaterial were determined by using XRD, SEM, FTIR, TGA/DTA, and BET studies. The prepared nanomaterials showed adsorption selectivity of Cu(II) ≈ F> Cr(VI) with a high adsorption capacity of 84.
View Article and Find Full Text PDFTalanta
December 2024
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada. Electronic address:
A microanalytical technique based on the photothermal effect in conjunction with back-scattering interferometry (BSI) using a single laser beam was developed for quantitative detection of heavy metals. After the chromogenic reaction of an analyte in a capillary tube, the photothermal effect induced by irradiation with the same laser beam leads to a change of the refractive index of the solution, which can be "quantified" using the BSI technique. For prove-of-concept, Cu(II) was chosen as the trial analyte, for which the solution changes to purplish through reacting with the chromogenic reagent; a single laser beam of 532 nm was adapted for both inducing the photothermal effect and realizing BSI detection.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2024
Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, China.
Heavy metal and nitrogen contaminations are serious concerns in aquatic environments. Marichromatium gracile YL28, a marine purple sulfur bacterium, has shown great potential as a bioremediation agent for removing inorganic nitrogen from marine water. This study further investigated its ability to simultaneously absorb heavy metals, including Pb(II), Cu(II), Cd(II) and Cr(VI), and remove inorganic nitrogen.
View Article and Find Full Text PDFEnviron Sci Process Impacts
December 2024
School of Chemistry and Chemical Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.
ACS Sens
October 2024
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.
Heavy metal contamination is an increasing global threat to human and environmental health, particularly in resource-limited areas. Traditional platforms for heavy metal detection are labor intensive and expensive and require lab facilities. While paper-based colorimetric sensors offer a simpler approach, their sensitivity limitations prevent them from meeting legislative requirements for many metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!