The quantitative assessment of policies aimed at climate change mitigation requires rigorously identifying abnormal changes in greenhouse gas emissions. We present a new dataset of robust level changes in greenhouse gas emissions that cannot be explained by aggregate socioeconomic fluctuations. Modern methods of structural break identification based on two-way fixed effects models are employed to estimate the size of significant level changes in emissions. The resulting dataset spans information for all major greenhouse gases in OECD countries across 37 IPCC sectors, from 1995 to 2022. The data unveils large differences in abnormal changes in emissions across gases, countries and sectors, as well as over time. Our resulting data can be applied to a broad range of research questions, including the analysis of the comparative efficacy of policy instruments to mitigate climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41597-024-04321-w | DOI Listing |
J Environ Manage
January 2025
Department of Farm Management (410b), Institute of Farm Management, University of Hohenheim, Schwerzstraße 44, 70599, Stuttgart, Germany.
Agriculture accounts for a large proportion of global greenhouse gas (GHG) emissions. It is therefore crucial to identify effective and efficient GHG mitigation potentials in agriculture, but also in related upstream sectors. However, previous studies in this area have rarely undertaken a cross-sectoral assessment.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 5, D-53115, Bonn, Germany.
Climate change significantly challenges smallholder mixed crop-livestock (MCL) systems in sub-Saharan Africa (SSA), affecting food and feed production. This study enhances the SIMPLACE modeling framework by incorporating crop-vegetation-livestock models, which contribute to the development of sustainable agricultural practices in response to climate change. Applying such a framework in a domain in West Africa (786,500 km) allowed us to estimate the changes in crop (Maize, Millet, and Sorghum) yield, grass biomass, livestock numbers, and greenhouse gas emission in response to future climate scenarios.
View Article and Find Full Text PDFSci Data
January 2025
Department of Economics, Vienna University of Economics and Business (WU), Vienna, Austria.
The quantitative assessment of policies aimed at climate change mitigation requires rigorously identifying abnormal changes in greenhouse gas emissions. We present a new dataset of robust level changes in greenhouse gas emissions that cannot be explained by aggregate socioeconomic fluctuations. Modern methods of structural break identification based on two-way fixed effects models are employed to estimate the size of significant level changes in emissions.
View Article and Find Full Text PDFWater Res
January 2025
Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
Riverine NO and N fluxes, key components of the global nitrogen budget, are known to be influenced by river size (often represented by average river width), yet the specific mechanisms behind these effects remain unclear. This study examined how environmental and microbial factors influenced sediment NO and N fluxes across rivers with varying widths (2.8 to 2,000 m) in China.
View Article and Find Full Text PDFSci Total Environ
January 2025
CATIE, Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba 30501, Costa Rica.
Agricultural systems are both emitters of greenhouse gases and have the potential to sequester carbon, especially agroforestry systems. Coffee agroforestry systems offer a wide range of intensities of use of agricultural inputs and densities and management of shade trees. We assessed the agronomic carbon footprint (up to farm gate) and modelled the carbon sequestration of a range of coffee agroforestry systems across 180 farms in Costa Rica and Guatemala.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!