Among expanding discoveries of quantum phases in moiré superlattices, correlated insulators stand out as both the most stable and most commonly observed. Despite the central importance of these states in moiré physics, little is known about their underlying nature. Here, we use pump-probe spectroscopy to show distinct time-domain signatures of correlated insulators at fillings of one (ν = -1) and two (ν = -2) holes per moiré unit cell in the angle-aligned WSe/WS system. Following photo-doping, we find that the disordering time of the ν = -1 state is independent of excitation density (n), as expected from the characteristic phonon response time associated with a polaronic state. In contrast, the disordering time of the ν = -2 state scales with , in agreement with plasmonic screening from free holons and doublons. These states display disparate reordering behavior dominated either by first order (ν = -1) or second order (ν = -2) recombination, suggesting the presence of Hubbard excitons and free carrier-like holons/doublons, respectively. Our work delineates the roles of electron-phonon (e-ph) versus electron-electron (e-e) interactions in correlated insulators on the moiré landscape and establishes non-equilibrium responses as mechanistic signatures for distinguishing and discovering quantum phases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-024-54886-8 | DOI Listing |
Nat Commun
January 2025
Department of Chemistry, Columbia University, New York, NY, USA.
Among expanding discoveries of quantum phases in moiré superlattices, correlated insulators stand out as both the most stable and most commonly observed. Despite the central importance of these states in moiré physics, little is known about their underlying nature. Here, we use pump-probe spectroscopy to show distinct time-domain signatures of correlated insulators at fillings of one (ν = -1) and two (ν = -2) holes per moiré unit cell in the angle-aligned WSe/WS system.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
Mammalian genome is hierarchically organized by CTCF and cohesin through loop extrusion mechanism to facilitate the organization of topologically associating domains (TADs). Mounting evidence suggests additional factors/mechanisms exist to orchestrate TAD formation and maintenance. In this study, we investigate the potential role of RNA-binding proteins (RBPs) in TAD organization.
View Article and Find Full Text PDFNano Lett
January 2025
Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.
Coulomb attraction with weak screening can trigger spontaneous exciton formation and condensation, resulting in a strongly correlated many-body ground state, namely, the excitonic insulator. One-dimensional (1D) materials natively have ineffective dielectric screening. For the first time, we demonstrate the excitonic instability of single atomic wires of transition metal telluride MTe (M = Mo, W), a family of 1D van der Waals (vdW) materials accessible in the laboratory.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Centre of Materials and Building Technologies (C-MADE), Department of Civil Engineering and Architecture, University of Beira Interior (UBI), 6201-001 Covilhã, Portugal.
The paper examines the impact of passive restraint on fire-induced spalling in concrete, utilizing a concrete mixture to minimize compositional variability. A variety of specimen geometries was prepared, including standard cubes and cylinders for the determination of mechanical properties and slabs of different dimensions for fire spalling tests conducted under controlled conditions. A top-opening Dragon furnace, which applies ISO 834-1 fire curves, was used to evaluate the influence of "cold rim" boundaries, where slab edges were insulated to create thermal restraint.
View Article and Find Full Text PDFAdv Mater
January 2025
CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!