Visual information emerging from the extrafoveal locations is important for visual search, saccadic eye movement control, and spatial attention allocation. Our everyday sensory experience with visual object categories varies across different parts of the visual field which may result in location-contingent variations in visual object recognition. We used a body, animal body, and chair two-forced choice object category recognition task to investigate this possibility. Animal body and chair images with various levels of visual ambiguity were presented at the fovea and different extrafoveal locations across the vertical and horizontal meridians. We found heterogeneous body and chair category recognition across the visual field. Specifically, while the recognition performance of the body and chair presented at the fovea were similar, it varied across different extrafoveal locations. The largest difference was observed when the body and chair images were presented at the lower-left and upper-right visual fields, respectively. The lower/upper visual field bias of the body/chair recognition was particularly observed in low/high stimulus visual signals. Finally, when subjects' performances were adjusted for a potential location-contingent decision bias in category recognition by subtracting the category detection in full noise condition, location-dependent category recognition was observed only for the body category. These results suggest heterogeneous body recognition bias across the visual field potentially due to more frequent exposure of the lower visual field to body stimuli. Our study reveals that visual object recognition exhibits notable variations across different visual field regions, with a pronounced bias in recognizing body images in the lower visual field. This heterogeneity in recognition performance suggests that the frequent exposure of certain visual field areas to specific object categories, such as bodies, influences our visual processing abilities. These findings highlight the importance of considering spatial attention and saccadic eye movements in understanding visual object recognition and have potential implications for designing more effective visual information displays and interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1523/ENEURO.0331-24.2024DOI Listing

Publication Analysis

Top Keywords

visual field
36
category recognition
20
visual
20
body chair
20
visual object
16
recognition
12
extrafoveal locations
12
object recognition
12
body
10
field
9

Similar Publications

Purpose: The purpose of this systematic review was to consolidate and summarize available data comparing virtual reality perimetry (VRP) with standard automated perimetry (SAP) in adults with glaucoma. Understanding the utility and diagnostic performance of emerging VRP technology may expand access to visual field testing but requires evidence-based validation.

Methods: A systematic literature search was conducted in 3 databases (PubMed Central, Embase, and Cochrane Central Register of Controlled Trials) from the date of inception to 10/09/2024.

View Article and Find Full Text PDF

Background And Hypothesis: Sequential saccade planning requires corollary discharge (CD) signals that provide information about the planned landing location of an eye movement. These CD signals may be altered among individuals with schizophrenia (SZ), providing a potential mechanism to explain passivity and anomalous self-experiences broadly. In healthy controls (HC), a key oculomotor CD network transmits CD signals from the thalamus to the frontal eye fields (FEF) and the intraparietal sulcus (IPS) and also remaps signals from FEF to IPS.

View Article and Find Full Text PDF

Population receptive field (pRF) mapping is a quantitative functional MRI (fMRI) analysis method that links visual field positions with specific locations in the visual cortex. A common preprocessing step in pRF analyses involves projecting volumetric fMRI data onto the cortical surface, typically leading to upsampling of the data. This process may introduce biases in the resulting pRF parameters.

View Article and Find Full Text PDF

Heavy metal-organic pollutants compound pollution at industrial legacy sites and have caused damage to the ecological environment and human health during recent decades. In view of the difficulty and high cost of post-contamination remediation, it is worth studying, and practically applying, cutoff walls to reduce the spread of pollution in advance. In this study, field-scale studies were carried out at e-waste dismantling legacy sites in Taizhou, Zhejiang Province of China, through the process of site investigation, numerical simulation, and cutoff wall practical application.

View Article and Find Full Text PDF

Artificial Visual System for Stereo-Orientation Recognition Based on Hubel-Wiesel Model.

Biomimetics (Basel)

January 2025

Institute of AI for Industries, Chinese Academy of Sciences, 168 Tianquan Road, Nanjing 211100, China.

Stereo-orientation selectivity is a fundamental neural mechanism in the brain that plays a crucial role in perception. However, due to the recognition process of high-dimensional spatial information commonly occurring in high-order cortex, we still know little about the mechanisms underlying stereo-orientation selectivity and lack a modeling strategy. A classical explanation for the mechanism of two-dimensional orientation selectivity within the primary visual cortex is based on the Hubel-Wiesel model, a cascading neural connection structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!