Objectives: Toxoplasmosis is a zoonotic parasitic disease caused by (), which can lead to complications such as encephalitis and ocular toxoplasmosis. The disease becomes more severe when the host's immune system is compromised. Rhoptry proteins are major virulence factors that enable to invade host cells. This study aims to construct a rhoptry protein 41 (/ROP41) gene knockout strain and preliminarily investigate the biological function of .
Methods: Using CRISPR/Cas9 technology, a specific single-guide RNA (sgRNA) for the target gene was designed and linked to a recombinant plasmid. Homologous fragments were fused with a pyrimethamine resistance gene for selection purposes. The recombinant plasmid and the homologous fragments were electroporated into , and PCR identification was performed after drug selection and monoclonal screening. Plaque assays were used to comprehensively assess whether affected the growth and proliferation of in host cells. Invasion and proliferation assays were conducted to evaluate the invasion ability of the knockout strain into host cells and its intracellular proliferation capacity. The STRING database was utilized to construct a protein-protein interaction (PPI) network, and functional enrichment analysis was performed to predict the signaling pathways in which ROP41 might be involved.
Results: The gene knockout strain (RH ) was successfully constructed and stably inherited. Plaque assays showed that compared with the parental strain, the number of plaques formed by the gene knockout strain did not significantly decrease, but the reduction in plaque size was statistically significant (<0.05). After the gene was knocked out, the invasion ability of was reduced, but there was no statistically significant difference in its proliferation ability (>0.05). The PPI network revealed that ROP41 was associated with other protein kinases and autophagy-related proteins. Enrichment analysis indicated that proteins interacting with ROP41 may be involved in signal transduction, biosynthesis, metabolism, and autophagy-related pathways and could be components of various kinase complexes and phagocytic vesicles.
Conclusions: The RH strain has been successfully constructed. ROP41 primarily affects the ability of to invade host cells and may play a role in signal transduction and autophagy-related pathways between and the host.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.11817/j.issn.1672-7347.2024.240179 | DOI Listing |
Zhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha 410013.
Objectives: Toxoplasmosis is a zoonotic parasitic disease caused by (), which can lead to complications such as encephalitis and ocular toxoplasmosis. The disease becomes more severe when the host's immune system is compromised. Rhoptry proteins are major virulence factors that enable to invade host cells.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Laboratory Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China.
Background: Enterobacter cloacae is increasingly prevalent and resistant to multiple antibiotics, making it a significant pathogen in healthcare settings with high mortality rates. However, its pathogenic mechanisms are not fully understood.
Results: In this study, we explored the role of nagZ in regulating the virulence of E.
Background: Oxylipins are oxygenated fatty acid (FA) metabolites that are important mediators of inflammation. Neuroinflammation is a hallmark of Alzheimer's disease (AD), and brains of AD patients contain more pro-inflammatory and less anti-inflammatory oxylipins compared to healthy controls. Free fatty acid receptor 4 (Ffar4) is a G-protein coupled receptor for medium and long-chain FAs, including, but not limited to, omega-3-polyunsaturated FAs.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy. Electronic address:
Biallelic mutations in the SACS gene, encoding sacsin, cause early-onset autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS), a neurodegenerative disease also characterized by unique and poorly understood retinal abnormalities. While two murine models replicate the phenotypic and neuronal features observed in patients, no retinal phenotype has been described so far. In a zebrafish knock-out strain that faithfully mirrors the main aspects of ARSACS, we observed impaired visual function due to photoreceptor degeneration, likely caused by cell cycle defects in progenitor cells.
View Article and Find Full Text PDFMetab Eng
January 2025
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA. Electronic address:
Amino acid auxotrophy refers to an organism's inability to synthesize one or more amino acids that are required for cell growth. In microbiome research, co-cultures of amino acid auxotrophs are often used to investigate metabolite cross-feeding interactions and model community dynamics. Thus far, it has been implicitly assumed that amino acids are mainly cross-fed between these auxotrophs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!