miR-28-3p suppresses gastric cancer growth and EMT-driven metastasis by targeting the ARF6/Hedgehog axis.

Mol Cell Probes

Department of Medical Oncology, The First People's Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650000, China; Faculty of Medicine, Kunming University of Science and Technology, Kunming, 650000, China. Electronic address:

Published: January 2025

Gastric cancer (GC), among the most prevalent malignant tumors globally, demonstrates a rapid metastasis rate leading to high mortality. While microRNAs (miRNAs) have been recognized as critical regulators of tumor progression, the specific role of miR-28-3p in GC remains unclear. In this study, we demonstrate that miR-28-3p acts as a tumor suppressor by inhibiting GC cell proliferation and EMT-driven migration in vitro, as well as tumor growth and metastasis in vivo. Mechanistically, miR-28-3p directly targets ADP ribosylation factor 6 (ARF6), a small GTPase identified as an oncogene in GC. We reveal that ARF6 is significantly upregulated in GC and activates the GLI1/2-dependent Hedgehog signaling pathway, promoting tumor growth and EMT. Notably, ARF6 knockdown mitigates the pro-tumor effects caused by miR-28-3p deficiency, while combined ARF6 inhibition and Hedgehog pathway suppression exhibit synergistic anti-tumor effects. This study establishes the miR-28-3p-ARF6-Hedgehog signaling axis as a critical regulatory pathway in GC progression. Our findings provide novel insights into GC pathogenesis and highlight the therapeutic potential of targeting this axis for innovative treatment strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcp.2025.102010DOI Listing

Publication Analysis

Top Keywords

gastric cancer
8
tumor growth
8
mir-28-3p
5
mir-28-3p suppresses
4
suppresses gastric
4
cancer growth
4
growth emt-driven
4
emt-driven metastasis
4
metastasis targeting
4
targeting arf6/hedgehog
4

Similar Publications

Purpose: Fibroblast growth factor receptor 2 isoform IIIb (FGFR2b) protein overexpression is an emerging biomarker in gastric cancer and gastroesophageal junction cancer (GC). We assessed FGFR2b protein overexpression prevalence in nearly 3,800 tumor samples as part of the prescreening process for a global phase III study in patients with newly diagnosed advanced or metastatic GC.

Methods: As of June 28, 2024, 3,782 tumor samples from prescreened patients from 37 countries for the phase III FORTITUDE-101 trial (ClinicalTrials.

View Article and Find Full Text PDF

Purpose: Patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD) have been noted to face increased cancer incidence. Yet, the impact of concomitant renal dysfunction on acute outcomes following elective surgery for cancer remains to be elucidated.

Methods: All adult hospitalizations entailing elective resection for lung, esophageal, gastric, pancreatic, hepatic, or colon cancer were identified in the 2016-2020 National Inpatient Sample.

View Article and Find Full Text PDF

Autoimmune gastritis (AIG) is a chronic inflammatory condition characterized by immune-mediated destruction of gastric parietal cells, leading to oxyntic atrophy, achlorhydria, and hypergastrinemia. While AIG was historically linked to gastric adenocarcinoma and type I neuroendocrine tumors (NETs), recent evidence suggests the risk of adenocarcinoma in AIG is lower than previously believed, particularly in Helicobacter pylori (H. pylori)-negative patients.

View Article and Find Full Text PDF

Background: The breakthrough discovery of novel biomarkers with prognostic and diagnostic value enables timely medical intervention for the survival of patients diagnosed with gastric cancer (GC). Typically, in studies focused on biomarker analysis, highly connected nodes (hubs) within the protein-protein interaction network (PPIN) are proposed as potential biomarkers. However, this study revealed an unexpected finding following the clustering of network nodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!