Head trauma from blast exposure is a growing health concern, particularly among active military personnel, and is considered the signature injury of the Gulf War. However, it remains elusive whether fundamental differences exist between blast-related traumatic brain injuries (TBI) and TBI due to other mechanisms. Considering the importance of lipid metabolism associated with neuronal membrane integrity and its compromise during TBI, we sought to find changes in lipidomic profiling during blast or blunt (Stereotaxically Controlled Contusison-SCC)-mediated TBI. In the current study, we have developed the mild TBI (mTBI) model of blast (130 ± 10 kPa) and SCC (1.5 mm dorsal-ventral) on C57BL/6 mice, followed by the serum collection on days 1 and 7. Lipid metabolomics was performed via ultra-high performance liquid chromatography (UHPLC) quadrupole time-of-flight mass spectrometry (qTOF-MS). Additionally, neurobehavioral outcomes were estimated using a revised neurobehavioral severity score for mice (mNSS-R) and an open field test (OFT). The study found that blast-exposed group exhibited more lipid dysregulation, as evidenced by a higher number of significant lipids and associated pathways at both time points. However, the comparative investigation further reveals eight significantly common lipids that can characterize the mTBI regardless of the manner of induction (blast or blunt). Besides, modulated neurobehavioral, locomotor and anxiety functions were also observed post-mTBI. The study illustrates the distinct systemic lipid metabolism intended to preserve the brain's lipid homeostasis post-mTBI. This approach may provide novel insights into lipid metabolism and identification of individual lipid species that aid in understanding the pathophysiology of mTBI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2025.115141DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
12
lipid
8
traumatic brain
8
blast blunt
8
blast
5
tbi
5
comparative lipid
4
lipid profiling
4
profiling reveals
4
reveals differential
4

Similar Publications

Transcriptional regulation of miR528-PPO module by miR156 targeted SPLs orchestrates chilling response in banana.

Mol Hortic

January 2025

Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.

Banana is sensitive to cold stress and often suffers from chilling injury with browning peel and failure to normal ripening. We have previously reported that banana chilling injury is accompanied by a reduction of miR528 accumulation, alleviating the degradation of its target gene MaPPO and raising ROS levels that cause peel browning. Here, we further revealed that the miR528-MaPPO cold-responsive module was regulated by miR156-targeted SPL transcription factors, and the miR156c-MaSPL4 module was also responsive to cold stress in banana.

View Article and Find Full Text PDF

A machine learning model accurately identifies glycogen storage disease Ia patients based on plasma acylcarnitine profiles.

Orphanet J Rare Dis

January 2025

Laboratory of Metabolic Diseases, Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Postbus, Groningen, 30001 - 9700 RB, the Netherlands.

Background: Glycogen storage disease (GSD) Ia is an ultra-rare inherited disorder of carbohydrate metabolism. Patients often present in the first months of life with fasting hypoketotic hypoglycemia and hepatomegaly. The diagnosis of GSD Ia relies on a combination of different biomarkers, mostly routine clinical chemical markers and subsequent genetic confirmation.

View Article and Find Full Text PDF

Glomerular endothelial cells (GECs) are pivotal in developing glomerular sclerosis disorders. The advancement of focal segmental glomerulosclerosis (FSGS) is intimately tied to disruptions in lipid metabolism. Sphingosine-1-phosphate (S1P), a molecule transported by high-density lipoproteins (HDL), exhibits protective effects on vascular endothelial cells by upregulating phosphorylated endothelial nitric oxide synthase (p-eNOS) and enhancing nitric oxide (NO) production.

View Article and Find Full Text PDF

Empagliflozin-based quadruple oral therapy for type 2 diabetes: a prospective cohort study.

Sci Rep

January 2025

Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran.

The management of Type-2 Diabetes Mellitus (T2DM) remains challenging in cases of poor glycemic control despite triple Oral Hypoglycemic Agent (OHA) therapy. This prospective cohort study aimed to assess the effectiveness of Empagliflozin as part of a quadruple OHA regimen over a 7-year follow-up period in 575 adult patients with uncontrolled T2DM on a triple OHA regimen and who were unwilling to initiate insulin therapy. Overall, 92.

View Article and Find Full Text PDF

[Comparison of the effects of tenofovir amibufenamide and tenofovir alafenamide on lipid metabolism in the body].

Zhonghua Gan Zang Bing Za Zhi

December 2024

Department of Infectious Diseases and Hepatology, Yichun People's Hospital, Yichun336000, China.

To compare the effectiveness and safety profile of tenofovir amibufenamide (TMF) and tenofovir alafenamide (TAF), especially the effects on lipid metabolism in the treatment of chronic hepatitis B. A retrospective study was conducted on the virological response rate, biochemical response rate, renal function indicators, and lipid metabolism status of 159 cases with chronic hepatitis B (72 cases with TMF and 87 cases with TAF) after 48 weeks of antiviral treatment. The effects of the two drugs on lipid metabolism were further explored through cell and animal experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!