Dimeric guaianolide sesquiterpenoids from the flowers of Chrysanthemum indicum ameliorate hepatic steatosis through mitigating SIRT1-mediated lipid accumulation and ferroptosis.

J Adv Res

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China; Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China; Department of Pharmaceutical Sciences and Technology, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao 999078, China. Electronic address:

Published: January 2025

Introduction: Non-alcoholic fatty liver disease (NAFLD) acts as the primary contributor to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and potentially hepatocellular carcinoma. The flowers of Chrysanthemum indicum, a traditional edible medicinal herb, have been widely used in China for more than 2000 years. However, the function of C. indicum in managing NAFLD has seldom been investigated.

Objectives: To reveal the novel active components and underlying mechanisms of C. indicum in treating NAFLD.

Methods: An MS/MS-based molecular networking-guided strategy was used for the chemical investigation. The structure identification of the new compounds involved high resolution electrospray ionization mass spectrometry (HRESIMS), 1D and 2D nuclear magnetic resonance (NMR) spectra, electronic circular dichroism (ECD), and X-ray crystallographic analysis. The biological evaluation was performed using Nile Red staining, flow cytometry, commercial kits, western blotting, co-immunoprecipitation, isothermal titration calorimetry, cellular thermal shift assay, drug affinity responsive target stability assay, molecular docking, and confocal immunofluorescence.

Results: A total of 27 new dimeric sesquiterpenoids, chryindicolides A-Z (1-26) and chrysanthemolide C (27), together with seven known compounds, were isolated from the flowers of C. indicum under the guide of MS/MS-based molecular networking. Among them, compounds 1-7 were rare chlorine-containing guaianolide dimers. Chryindicolide O (15) directly bound and activated the deacetylase Sirtuin 1 (SIRT1) to reduce de novo lipogenesis, enhance fatty acid β-oxidation, and inhibit ferroptosis in palmitic acid and oleic acid (P/O)-induced AML12 hepatocytes. In addition, chryindicolide O significantly ameliorated liver steatosis in high-fat diet-fed zebrafish.

Conclusion: Novel guaianolide dimers from C. indicum alleviated hepatic steatosis through mitigating SIRT1-mediated lipid accumulation and ferroptosis, suggesting that they could be further developed as candidates against NAFLD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jare.2024.12.047DOI Listing

Publication Analysis

Top Keywords

flowers chrysanthemum
8
chrysanthemum indicum
8
hepatic steatosis
8
steatosis mitigating
8
mitigating sirt1-mediated
8
sirt1-mediated lipid
8
lipid accumulation
8
accumulation ferroptosis
8
ms/ms-based molecular
8
guaianolide dimers
8

Similar Publications

FLOWERING LOCUS C-like mediates low-ambient-temperature-induced late flowering in chrysanthemum.

J Exp Bot

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.

The flowering time of Chrysanthemum morifolium predominantly depends on day length but is also sensitive to ambient temperature. However, the mechanisms underlying the response of chrysanthemum to ambient temperature are mainly unknown. This study identified a MADS-box transcription factor called CmFLC-like, a representative low ambient temperature-responsive factor induced in chrysanthemum leaves and shoot apical meristems at 15°C.

View Article and Find Full Text PDF

CmBBX28-CmMYB9a Module Regulates Petal Anthocyanin Accumulation in Response to Light in Chrysanthemum.

Plant Cell Environ

January 2025

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization. Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, P. R. China.

Light is one of the most important environmental factors that affect plant growth and development. It also stimulates anthocyanin biosynthesis in plants. However, the precise molecular mechanisms through which light regulates anthocyanin biosynthesis, particularly in non-model plant species, remain poorly understood.

View Article and Find Full Text PDF

Aging-dependent temporal regulation of MIR156 epigenetic silencing by CiLDL1 and CiNF-YB8 in chrysanthemum.

New Phytol

January 2025

Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.

Temporal decline in microRNA miR156 expression is crucial for the transition to, and maintenance of, the adult phase and flowering competence in flowering plants. However, the molecular mechanisms underlying the temporal regulation of miR156 reduction remain largely unknown. Here, we investigated the epigenetic mechanism regulating the temporal silencing of cin-MIR156 in wild chrysanthemum (Chrysanthemum indicum), focusing on the role of the lysine-specific demethylase CiLDL1 and the nuclear factor Y complex.

View Article and Find Full Text PDF

First Report of Causing Root Rot on Tulip Poplar in Tennessee and the United States.

Plant Dis

January 2025

Tennessee State University, Otis Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, Tennessee, United States, 37110;

Tulip poplar () is a member of the Magnolia family, is a large, fast-growing, long-lived, deciduous tree native to eastern North America. One-year-old tulip poplar seedlings grown under field conditions in a commercial nursery in Warren County, Tennessee, exhibited severe root rot in May 2024. Dark brown to black lesions were observed on the affected roots.

View Article and Find Full Text PDF

Eczematous paradoxical reactions are commonly associated with anti-interleukin-17A (anti-IL-17A) antibodies. However, IL-23 p19 inhibitors can also cause similar cutaneous manifestations. We present a case of a 77-year-old Japanese woman with palmoplantar pustulosis (PPP), who developed eczematous lesions on her face, neck, and dorsum of the hands 10 weeks after initiating guselkumab treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!