Surpassing protein specificity in biomimetics of bacterial amyloids.

Int J Biol Macromol

Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain; Biomedical Research Institute Sant Pau (IR Sant Pau), Barcelona, Spain. Electronic address:

Published: January 2025

In nature, nontoxic protein amyloids serve as dynamic, protein-specific depots, exemplified by both bacterial inclusion bodies and secretory granules from the endocrine system. Inspired by these systems, chemically defined and regulatory-compliant artificial protein microgranules have been developed for clinical applications as endocrine-like protein repositories. This has been achieved by exploiting the reversible coordination between histidine residues and divalent cations such as Zn, that promotes protein-protein interactions. While stereospecificity is a main architectonic feature of natural amyloids, the potential for synthetic approaches to create hybrid protein materials remains unexplored. Such materials could enable the occurrence and synchronized local application of diverse proteins in predefined molar ratios, for coupled enzymatic reactions or delivery of synergistically acting polypeptides. Here, we report on the fabrication of artificial protein granules with amyloidal architecture formed by combining two structurally distinct polypeptides. Specifically, we tested co-aggregation of the pairs GFP/IRFP and GFP/β-galactosidase. The formation of hybrid microparticles was confirmed through FRET and complementary methodologies, demonstrating that the His-Zn clustering technology does not require sequential or structural homologies between aggregating polypeptides. This approach opens new avenues for the development of functional depots that capitalize on synergistic protein functionalities, paving the way for next-generation functional materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.139635DOI Listing

Publication Analysis

Top Keywords

artificial protein
8
protein
6
surpassing protein
4
protein specificity
4
specificity biomimetics
4
biomimetics bacterial
4
bacterial amyloids
4
amyloids nature
4
nature nontoxic
4
nontoxic protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!