Enzymes are natural biocatalysts with the advantages such as high catalytic efficiency, and strong substrate selectivity. However, the features of structure instability and low reusability rates have limited the industrial applications of enzyme. Fortunately, advancements in technology have made enzyme immobilization possible. Porous microspheres possess desirable characteristics, for example a large specific surface area, high porosity, stable mechanical and chemical properties, and cost-effectiveness, making them excellent carriers for immobilized enzymes. This review covered the latest developments in the field and the utilization of porous microsphere nanomaterials for enzyme immobilization. It emphasized the various methods used for carrier immobilization of enzymes and summarized the diverse applications of porous microsphere nanomaterials in enzyme immobilization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.139627DOI Listing

Publication Analysis

Top Keywords

enzyme immobilization
16
porous microspheres
8
porous microsphere
8
microsphere nanomaterials
8
nanomaterials enzyme
8
enzyme
5
immobilization
5
review porous
4
microspheres enzyme
4
immobilization strategies
4

Similar Publications

Deep eutectic solution elution assisted ligand affinity assay: A useful tool for the active coumarins screening from Fructus cnidii.

Anal Chim Acta

January 2025

Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China. Electronic address:

Background: Many of the ligand affinity analyses are presented in water environment, and the hydrophilic solution such as methanol is used for dissociating the bound compounds. The obtained dissociation solution needs to be concentrated for improving the sensitivity of the assay. However, it is not good for the analysis of hydrophobic and volatile compounds such as coumarins.

View Article and Find Full Text PDF

Improved activity and stability of cellulase by immobilization on FeO nanoparticles functionalized with Reactive Red 120.

Int J Biol Macromol

January 2025

Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran. Electronic address:

Cellulase is extensively used in the biorefinery of cellulosic materials to fermentable sugars in bioethanol production. Application of cellulase in the free form has disadvantages in enzyme wastage and low stability. The results of the present work showed these drawbacks can be solved by cellulase immobilization on functionalized FeO magnetic nanoparticles (MNPs) with reactive red 120 (RR120) as the affinity ligands.

View Article and Find Full Text PDF

Enzymes are natural biocatalysts with the advantages such as high catalytic efficiency, and strong substrate selectivity. However, the features of structure instability and low reusability rates have limited the industrial applications of enzyme. Fortunately, advancements in technology have made enzyme immobilization possible.

View Article and Find Full Text PDF

Engineering high-activity crosslinked enzyme aggregates via SpyCatcher/SpyTag-mediated self-assembly.

Int J Biol Macromol

January 2025

College of Forestry, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, Shaanxi 712100, China. Electronic address:

Crosslinked Enzyme Aggregates (CLEAs) are favored for their operational stability and recyclability. However, the traditional CLEAs preparation may distort the enzyme's active site and reduce activity. Therefore, we developed a universally applicable crosslinked SpyCatcher scaffold system designed for the facile preparation of CLEAs.

View Article and Find Full Text PDF

Choerospondias axillaris is a medicinal plant used for treating coronary heart disease (CHD) due to its broad spectrum of anti-inflammatory activities. Cyclooxygenase 2 (COX-2) and lipoxygenase 5 (5-LOX) were immobilized on magnetic nanoparticles for selective ligand-extraction of these two enzymes present in C. axillaris.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!