Enzymes are natural biocatalysts with the advantages such as high catalytic efficiency, and strong substrate selectivity. However, the features of structure instability and low reusability rates have limited the industrial applications of enzyme. Fortunately, advancements in technology have made enzyme immobilization possible. Porous microspheres possess desirable characteristics, for example a large specific surface area, high porosity, stable mechanical and chemical properties, and cost-effectiveness, making them excellent carriers for immobilized enzymes. This review covered the latest developments in the field and the utilization of porous microsphere nanomaterials for enzyme immobilization. It emphasized the various methods used for carrier immobilization of enzymes and summarized the diverse applications of porous microsphere nanomaterials in enzyme immobilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.139627 | DOI Listing |
Anal Chim Acta
January 2025
Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China. Electronic address:
Background: Many of the ligand affinity analyses are presented in water environment, and the hydrophilic solution such as methanol is used for dissociating the bound compounds. The obtained dissociation solution needs to be concentrated for improving the sensitivity of the assay. However, it is not good for the analysis of hydrophobic and volatile compounds such as coumarins.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran. Electronic address:
Cellulase is extensively used in the biorefinery of cellulosic materials to fermentable sugars in bioethanol production. Application of cellulase in the free form has disadvantages in enzyme wastage and low stability. The results of the present work showed these drawbacks can be solved by cellulase immobilization on functionalized FeO magnetic nanoparticles (MNPs) with reactive red 120 (RR120) as the affinity ligands.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China. Electronic address:
Enzymes are natural biocatalysts with the advantages such as high catalytic efficiency, and strong substrate selectivity. However, the features of structure instability and low reusability rates have limited the industrial applications of enzyme. Fortunately, advancements in technology have made enzyme immobilization possible.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Forestry, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, Shaanxi 712100, China. Electronic address:
Crosslinked Enzyme Aggregates (CLEAs) are favored for their operational stability and recyclability. However, the traditional CLEAs preparation may distort the enzyme's active site and reduce activity. Therefore, we developed a universally applicable crosslinked SpyCatcher scaffold system designed for the facile preparation of CLEAs.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
Department of Pharmacy, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China.
Choerospondias axillaris is a medicinal plant used for treating coronary heart disease (CHD) due to its broad spectrum of anti-inflammatory activities. Cyclooxygenase 2 (COX-2) and lipoxygenase 5 (5-LOX) were immobilized on magnetic nanoparticles for selective ligand-extraction of these two enzymes present in C. axillaris.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!