Airborne particulate matter (PM) in urban environments poses significant health risks by penetrating the respiratory system, with concern over lung-deposited surface area (LDSA) as an indicator of particle exposure. This study aimed to investigate the diurnal trends and sources of LDSA, particle number concentration (PNC), elemental carbon (EC), and organic carbon (OC) concentrations in Los Angeles across different seasons to provide a comprehensive understanding of the contributions from primary and secondary sources of ultrafine particles (UFPs). Hourly measurements of PNC and LDSA were conducted using the DiSCmini and Scanning Mobility Particle Sizer (SMPS), while OC and EC concentrations were measured using the Sunset Lab EC/OC Monitor. The results showed distinct diurnal trends in PNC and EC, with peaks occurring in the early morning and evening, which were consistent with periods of increased traffic volume. During warmer periods, a midday increase in PNC was observed, attributed to photochemical reactions. In contrast, a nighttime peak during colder months suggested the formation of secondary aerosols through aqueous-phase chemistry. Additionally, the DiSCmini consistently reported higher LDSA values than SMPS, indicating the presence of irregularly shaped UFPs, particularly during periods of heavy traffic flow. Positive Matrix Factorization (PMF) analysis identified three primary sources. Factor 1 (photochemically influenced processes), driven by secondary organic aerosol formation during warmer periods, contributed to 19% of LDSA. Factor 2, in which primarily traffic influenced emissions were the dominant contributor, accounting for 70% of LDSA and associated with high loadings of OC (61%), EC (78%), and NO (94%). Factor 3 (aqueous phase secondary process influenced emissions) during colder months, accounted for 11% of LDSA. Both Factor 1 and 3 sources exhibited comparable contributions of OC (52% and 48%, respectively), underscoring their roles in secondary aerosol formation. These findings emphasize the need to address both primary and secondary emissions to mitigate health risks associated with UFP exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2025.125651 | DOI Listing |
Environ Sci Technol
January 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China.
Chlorine radicals (Cl) are highly reactive and affect the fate of air pollutants. Several field studies in China have revealed elevated levels of daytime molecular chlorine (Cl), which, upon photolysis, release substantial amounts of Cl but are poorly represented in current chemical transport models. Here, we implemented a parametrization for the formation of daytime Cl through the photodissociation of particulate nitrate in acidic environments into a regional model and assessed its impact on coastal air quality during autumn in South China.
View Article and Find Full Text PDFSci Adv
January 2025
Doerr School of Sustainability, Stanford University, Stanford, CA, USA.
Poor ambient air quality poses a substantial global health threat. However, accurate measurement remains challenging, particularly in countries such as India where ground monitors are scarce despite high expected exposure and health burdens. This lack of precise measurements impedes understanding of changes in pollution exposure over time and across populations.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, Changchun 130102, China.
Climate change and human activity are increasing the frequency of wildfires in peatlands and threatening permafrost peatland carbon pools. In Northeast China, low-severity prescribed fires are conducted annually on permafrost peatlands to reduce the risk of wildfires. These fires typically do not burn surface peat but lead to the loss of surface vegetation and introduction of pyrogenic carbon.
View Article and Find Full Text PDFInt J Circumpolar Health
December 2025
Department of Chemistry, Carleton University, Ottawa, ON, Canada.
Rates of respiratory tract infections for children living in remote First Nations communities in the Sioux Lookout Zone in Northwestern Ontario are elevated and associated with poor indoor environmental quality including high exposures to endotoxin and serious dampness and mould damage. The studies also revealed a high prevalence of cigarette smoking and most houses have wood stoves, of variable quality. Depending on structure, polycyclic aromatic hydrocarbons (PAH) are carcinogens, immunotoxins and/or inflammatory mediators that are byproducts of the incomplete combustion of organic materials.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Technion - Israel Institute of Technology, Haifa, Israel.
This work examines the impact of the electrification of the Holon-Bat Yam passenger train line (central Israel) on air pollutant concentrations using data collected from air quality monitoring stations that operated at the train stations across the electrified train line. We present statistically significant reduction in the annual average NO, NO and NO concentrations (29-45%, 79-85% and 65-75%, respectively), attributed to the electrification of the passenger train line. The drop in the NO and NO concentrations was much stronger than in the NO concentrations, since NO is the main nitrogen species emitted by diesel locomotives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!