Spinocerebellar Ataxia Type 8 (SCA8) is an inherited neurodegenerative disease caused by a bidirectionally expressed CTG●CAG expansion mutation in the ATXN-8 and ATXN8-OS genes. While SCA8 patients have motor abnormalities, patients may also exhibit psychiatric symptoms and cognitive dysfunction. It is difficult to elucidate how the disease alters brain function in areas with little or no degeneration producing both motor and cognitive symptoms. Using transparent polymer skulls and CNS-wide GCaMP6f expression, we studied neocortical networks throughout SCA8 progression using wide-field Ca imaging in a transgenic mouse model of SCA8. Compared to wild-type controls, neocortical networks in SCA8+ mice were hyperconnected globally, which leads to network configurations with increased global efficiency and centrality. At the regional level, significant network changes occurred in nearly all cortical regions, however mainly involved sensory and association cortices. Changes in functional connectivity in anterior motor regions worsened later in the disease. Near perfect decoding of animal genotype was obtained using a generalized linear model based on canonical correlation strengths between activity in cortical regions. The major contributors to decoding were concentrated in the somatosensory, higher visual and retrosplenial cortices and occasionally extended into the motor regions, demonstrating that the areas with the largest network changes are predictive of disease state.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2025.106795DOI Listing

Publication Analysis

Top Keywords

mouse model
8
spinocerebellar ataxia
8
ataxia type
8
type sca8
8
neocortical networks
8
network changes
8
cortical regions
8
motor regions
8
sca8
5
cerebral cortical
4

Similar Publications

SMAC-armed oncolytic virotherapy enhances the anticancer activity of PD1 blockade by modulating PANoptosis.

Biomark Res

January 2025

Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA.

Background: Oncolytic viruses (OVs) are increasingly recognized as promising tools for cancer therapy, as they selectively infect and destroy tumor cells while leaving healthy cells unharmed. Despite considerable progress, the limited therapeutic efficacy of OV-based virotherapy continues to be a significant challenge in cancer treatment.

Methods: The SMAC/DIABLO gene was inserted into the genome of vesicular stomatitis virus (VSV) to generate VSV-S.

View Article and Find Full Text PDF

An integrated investigation of mitochondrial genes in COPD reveals the causal effect of NDUFS2 by regulating pulmonary macrophages.

Biol Direct

January 2025

Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.

Background: Despite the increasing body of evidence that mitochondrial activities implicate in chronic obstructive pulmonary disease (COPD), we are still far from a causal-logical and mechanistic understanding of the mitochondrial malfunctions in COPD pathogenesis.

Results: Differential expression genes (DEGs) from six publicly available bulk human lung tissue transcriptomic datasets of COPD patients were intersected with the known mitochondria-related genes from MitoCarta3.0 to obtain mitochondria-related DEGs associated with COPD (MitoDEGs).

View Article and Find Full Text PDF

Background: Microsatellite instability-high (MSI-H) metastatic colorectal cancer (CRC) patients are the dominant population in immune checkpoint blockade treatments, while more than half of them could not benefit from single-agent immunotherapy. We tried to identify the biomarker of MSI-H CRC and explore its role and mechanism in anti-PD-1 treatments. Tumor-specific MHC-II was linked to a better response to anti-PD-1 in MSI-H CRC and CD74 promoted assembly and transport of HLA-DR dimers.

View Article and Find Full Text PDF

This study assessed the novel concept that osteoclast-derived Grem1 has regulatory functions in the skeletal response to calcium stress using an osteoclastic Grem1 conditional knockout (cKO) mouse model. The calcium stress was initiated by feeding cKO mutants and wildtype (WT) littermates a calcium-deficient diet for 2 weeks. Deletion of Grem1 in mature osteoclasts did not affect developmental bone growth nor basal bone turnover.

View Article and Find Full Text PDF

Hypophosphatasia (HPP) is a congenital bone disease caused by tissue-nonspecific mutations in the alkaline phosphatase gene. It is classified into six types: severe perinatal, benign prenatal, infantile, pediatric, adult, and odonto. HPP with femoral hypoplasia on fetal ultrasonography, seizures, or early loss of primary teeth can be easily diagnosed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!