. Diabetic retinopathy (DR) is a serious diabetes complication that can lead to vision loss, making timely identification crucial. Existing data-driven algorithms for DR staging from digital fundus images (DFIs) often struggle with generalization due to distribution shifts between training and target domains.. To address this, DRStageNet, a deep learning model, was developed using six public and independent datasets with 91 984 DFIs from diverse demographics. Five pretrained self-supervised vision transformers (ViTs) were benchmarked, with the best further trained using a multi-source domain (MSD) fine-tuning strategy.. DINOv2 showed a 27.4% improvement in L-Kappa versus other pretrained ViT. MSD fine-tuning improved performance in four of five target domains. The error analysis revealing 60% of errors due to incorrect labels, 77.5% of which were correctly classified by DRStageNet.. We developed DRStageNet, a DL model for DR, designed to accurately stage the condition while addressing the challenge of generalizing performance across target domains. The model and explainability heatmaps are available atwww.aimlab-technion.com/lirot-ai.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6579/ada86aDOI Listing

Publication Analysis

Top Keywords

target domains
12
deep learning
8
diabetic retinopathy
8
fundus images
8
msd fine-tuning
8
performance target
8
learning generalization
4
generalization diabetic
4
retinopathy staging
4
staging fundus
4

Similar Publications

Opportunities and Challenges of a Cap-and-Trade System for Plastics.

Environ Sci Technol

January 2025

Wageningen University and Research, Hydrology and Environmental Hydraulics Group, 6700 AA Wageningen, The Netherlands.

Recently, the rapid increase in global plastics production has caused various ecological and economic issues, worsened by poor material and waste management. Among the market-based instruments that could help mitigate the environmental impacts of plastics throughout their life-cycle, we evaluate the advantages and limitations of incorporating a cap-and-trade (CAT) system into future policy mixes. Our aim is to inspire further investigation of CAT's feasibility rather than presenting it as the ultimate solution.

View Article and Find Full Text PDF

Combating trade in illegal wood and forest products with machine learning.

PLoS One

January 2025

Department of Computer Science, Virginia Tech, Arlington, VA, United States of America.

Trade in wood and forest products spans the global supply chain. Illegal logging and associated trade in forest products present a persistent threat to vulnerable ecosystems and communities. Illegal timber trade has been linked to violations of tax and conservation laws, as well as broader transnational crimes.

View Article and Find Full Text PDF

Understanding the naïve B cell repertoire and its specificity for potential zoonotic threats, such as the highly pathogenic avian influenza (HPAI) H5Nx viruses, may allow prediction of infection- or vaccine-specific responses. However, this naïve repertoire and the possibility to respond to emerging, prepandemic viruses are largely undetermined. Here, we profiled naïve B cell reactivity against a prototypical HPAI H5 hemagglutinin (HA), the major target of antibody responses.

View Article and Find Full Text PDF

ZDHHC2 promoted antimycobacterial responses by selective autophagic degradation of B-RAF and C-RAF in macrophages.

Sci Adv

January 2025

Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.

S-Palmitoylation is a reversible post-translational modification involving saturated fatty acid palmitate-to-cysteine linkage in the protein, which guides many aspects of macrophage physiology in health and disease. However, the precise role and underlying mechanisms of palmitoylation in infection of macrophages remain elusive. Here, we found that infection induced the expression of zinc-finger DHHC domain-type palmitoyl-transferases (ZDHHCs), particularly ZDHHC2, in mouse macrophages.

View Article and Find Full Text PDF

SPT5 regulates RNA polymerase II stability via Cullin 3-ARMC5 recognition.

Sci Adv

January 2025

Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

The stability of RNA polymerase II (Pol II) is tightly regulated during transcriptional elongation for proper control of gene expression. Our recent studies revealed that promoter-proximal Pol II is destabilized via the ubiquitin E3 ligase cullin 3 (CUL3) upon loss of transcription elongation factor SPT5. Here, we investigate how CUL3 recognizes chromatin-bound Pol II as a substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!