The primary goal of the current work was to construct pH-sensitive nano and microcomposite hydrogel beads based on alginate (AL), carboxymethyl cellulose (CMC), biochar (BC), and two Moroccan clays: Ghassoul (swelling SW) and red (not swelling NSW) nano and microhybrid. The adsorbents, SW + AL, SW + AL + BC, SW + AL + CMC, NSW + AL, NSW + AL + BC, NSW + AL + CMC, AL, and AL + CMC were prepared for the adsorption of the antibiotic sulfadiazine (SDZ). The test samples were characterized using a variety of techniques, including X-Ray Diffraction (XRD), IR spectroscopy (FT-IR), and scanning electron microscopy (SEM), with the molecular structures of the studied additives geometrically optimized using the DFT/B3LYP method and the function 6-311G(d). Molecular electrostatic potential (MEP) and Mulliken charge analysis were utilized to estimate the adsorption sites of the additives under study, with conformational analysis using Monte Carlo (MC) simulations and Hirshfeld surface (HS) analysis to gain a better understanding of the SDZ's adsorption process on the clay and polymer surfaces through its sulfonyl, amino, and carboxylate groups. The study found that SW + AL + CMC beads had a maximum adsorption capability of 800 μmol/kg for SDZ. Furthermore, this composite demonstrated more than 100% adsorption and 0% subsequent desorption. The findings of this study point to the possibility of using SW + AL + CMC nanocomposite for SDZ removal, which would be useful for the environment and public health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.123952 | DOI Listing |
J Environ Manage
January 2025
Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain.
The primary goal of the current work was to construct pH-sensitive nano and microcomposite hydrogel beads based on alginate (AL), carboxymethyl cellulose (CMC), biochar (BC), and two Moroccan clays: Ghassoul (swelling SW) and red (not swelling NSW) nano and microhybrid. The adsorbents, SW + AL, SW + AL + BC, SW + AL + CMC, NSW + AL, NSW + AL + BC, NSW + AL + CMC, AL, and AL + CMC were prepared for the adsorption of the antibiotic sulfadiazine (SDZ). The test samples were characterized using a variety of techniques, including X-Ray Diffraction (XRD), IR spectroscopy (FT-IR), and scanning electron microscopy (SEM), with the molecular structures of the studied additives geometrically optimized using the DFT/B3LYP method and the function 6-311G(d).
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Environmental and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:
Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL 36849, USA.
Cellulose microgel beads fabricated using the dropping technique suffer from structural irregularity and mechanical variability. This limits their translation to biomedical applications that are sensitive to variations in material properties. Ionic salts are often uncontrolled by-products of this technique, despite the known effects of ionic salts on cellulose assembly.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
Calcium alginate hydrogel is one of the most widely used materials for drug-carrier beads used in drug-delivery systems. In this study, we developed a new method to improve the encapsulation efficiency of ingredients, such as medicines, in calcium alginate hydrogel beads. In the gold standard method, the hydrogel beads are prepared in the liquid phase.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Sri Krishnadevaraya University, Ananthapur 515003, India. Electronic address:
Composite gels are a type of soft matter, which contains a continuous three-dimensional crosslinked network and has been embedded with non-gel materials. Compared to pure gels, composite gels show high flexibility and tunability in properties and hence have attracted extensive interest in applications ranging from cancer therapy to tissue engineering. In this study, we incorporated triethylenetetramine (TETA)-functionalized cobalt ferrite nanoparticles (ANPs) into a hydrogel consisting of sodium alginate (SA) and methyl cellulose (MC), and examined the resulting composite gels for controlled drug release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!