The changes in lake ice phenology (LIP) can intuitively reflect the climate evolution in the regions where lakes are located, serving as an important indicator of climate change. The Tianshan Mountains, situated at the southern edge of freezing lakes in the Northern Hemisphere, are a crucial water resource base in Xinjiang and support significant ecosystems closely related to human activities. In the context of intensified climate change, this study focuses on the geographical location, altitude, and water quality differences among large lake groups in the mid-latitude region of Xinjiang, aiming to explore the characteristics of LIP changes in these lakes and their responses to driving factors, thereby providing a basis for effective environmental management and protection. This research conducts a comparative analysis of the LIP changes and driving factors of three large lakes-Sayram Lake (SL), Bosten Lake (BL), and Ebnur Lake (EL)-using multi-source remote sensing data to reveal the response and adaptation mechanisms of lakes under global warming. It effectively captures the time series variations of ice formation and melting, as well as the common responses to environmental and climatic factors. The results indicate that SL has experienced significant climate change effects, with earlier freezing times and accelerated melting speeds; In contrast, EL and BL have shown relatively minor changes, suggesting that geographical and hydrological factors may buffer the impacts of climate. The study finds that all three lakes are jointly influenced by environmental factors such as temperature, wind speed, and precipitation; however, due to differences in altitude, lake surface area, and water transparency, their responses to these climatic factors vary significantly. For instance, SL's high altitude gives water transparency a dominant role in LIP, while BL's larger surface area enhances the impact of precipitation and thermal capacity on the melting process. This indicates that, despite facing similar climate pressures, local environmental conditions can lead to different trends in ice phenology changes. This study offers a novel and efficient monitoring method for LIP, providing valuable insights for future LIP research and water resource management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.123880 | DOI Listing |
J Environ Manage
January 2025
College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi, 830017, China. Electronic address:
The changes in lake ice phenology (LIP) can intuitively reflect the climate evolution in the regions where lakes are located, serving as an important indicator of climate change. The Tianshan Mountains, situated at the southern edge of freezing lakes in the Northern Hemisphere, are a crucial water resource base in Xinjiang and support significant ecosystems closely related to human activities. In the context of intensified climate change, this study focuses on the geographical location, altitude, and water quality differences among large lake groups in the mid-latitude region of Xinjiang, aiming to explore the characteristics of LIP changes in these lakes and their responses to driving factors, thereby providing a basis for effective environmental management and protection.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Biology, York University, Toronto, ON, Canada.
Millions of people rely on lake ice for safe winter recreation. Warming air temperatures impact the phenology (timing of formation and breakup) and quality (ratio of black to white ice) of lake ice cover, both critical components of ice safety. Later formation and earlier breakup of lake ice lead to overall shorter periods of use.
View Article and Find Full Text PDFJ Geophys Res Biogeosci
November 2024
Biology Department SUNY New Paltz New Paltz NY USA.
Nat Commun
August 2024
MARE - Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 016, 1749-016, Lisboa, Portugal.
The Antarctic Peninsula (West Antarctica) marine ecosystem has undergone substantial changes due to climate-induced shifts in atmospheric and oceanic temperatures since the 1950s. Using 25 years of satellite data (1998-2022), this study presents evidence that phytoplankton biomass and bloom phenology in the West Antarctic Peninsula are significantly changing as a response to anthropogenic climate change. Enhanced phytoplankton biomass was observed along the West Antarctic Peninsula, particularly in the early austral autumn, resulting in longer blooms.
View Article and Find Full Text PDFFront Microbiol
June 2024
Laboratory of Research and Nature Protection, Krzczonów, Poland.
Introduction: Global warming affects air and water temperatures, which impacts the phenology of lakes and aquatic ecosystems. These changes are most noticeable during winter, when the potentially toxic forms its inoculum for annual blooms. Mostly, research has been conducted on alpine lakes, where blooms have persisted for decades, while a few have focused on temperate lakes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!