The changes in lake ice phenology (LIP) can intuitively reflect the climate evolution in the regions where lakes are located, serving as an important indicator of climate change. The Tianshan Mountains, situated at the southern edge of freezing lakes in the Northern Hemisphere, are a crucial water resource base in Xinjiang and support significant ecosystems closely related to human activities. In the context of intensified climate change, this study focuses on the geographical location, altitude, and water quality differences among large lake groups in the mid-latitude region of Xinjiang, aiming to explore the characteristics of LIP changes in these lakes and their responses to driving factors, thereby providing a basis for effective environmental management and protection. This research conducts a comparative analysis of the LIP changes and driving factors of three large lakes-Sayram Lake (SL), Bosten Lake (BL), and Ebnur Lake (EL)-using multi-source remote sensing data to reveal the response and adaptation mechanisms of lakes under global warming. It effectively captures the time series variations of ice formation and melting, as well as the common responses to environmental and climatic factors. The results indicate that SL has experienced significant climate change effects, with earlier freezing times and accelerated melting speeds; In contrast, EL and BL have shown relatively minor changes, suggesting that geographical and hydrological factors may buffer the impacts of climate. The study finds that all three lakes are jointly influenced by environmental factors such as temperature, wind speed, and precipitation; however, due to differences in altitude, lake surface area, and water transparency, their responses to these climatic factors vary significantly. For instance, SL's high altitude gives water transparency a dominant role in LIP, while BL's larger surface area enhances the impact of precipitation and thermal capacity on the melting process. This indicates that, despite facing similar climate pressures, local environmental conditions can lead to different trends in ice phenology changes. This study offers a novel and efficient monitoring method for LIP, providing valuable insights for future LIP research and water resource management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.123880DOI Listing

Publication Analysis

Top Keywords

ice phenology
12
driving factors
12
climate change
12
lake ice
8
phenology changes
8
changes driving
8
water resource
8
altitude water
8
lip changes
8
climatic factors
8

Similar Publications

The changes in lake ice phenology (LIP) can intuitively reflect the climate evolution in the regions where lakes are located, serving as an important indicator of climate change. The Tianshan Mountains, situated at the southern edge of freezing lakes in the Northern Hemisphere, are a crucial water resource base in Xinjiang and support significant ecosystems closely related to human activities. In the context of intensified climate change, this study focuses on the geographical location, altitude, and water quality differences among large lake groups in the mid-latitude region of Xinjiang, aiming to explore the characteristics of LIP changes in these lakes and their responses to driving factors, thereby providing a basis for effective environmental management and protection.

View Article and Find Full Text PDF

Millions of people rely on lake ice for safe winter recreation. Warming air temperatures impact the phenology (timing of formation and breakup) and quality (ratio of black to white ice) of lake ice cover, both critical components of ice safety. Later formation and earlier breakup of lake ice lead to overall shorter periods of use.

View Article and Find Full Text PDF

Shorter Ice Duration and Changing Phenology Influence Under-Ice Lake Temperature Dynamics.

J Geophys Res Biogeosci

November 2024

Biology Department SUNY New Paltz New Paltz NY USA.

Article Synopsis
  • * The timing of ice-off has become much more variable, influenced significantly by spring air temperatures and snowfall, leading to a reduction in total ice duration by about a month.
  • * Changes in ice phenology result in less winter inverse stratification, causing a longer spring mixing period, challenging the assumptions based on traditional ice clearance dates regarding under-ice thermal dynamics.
View Article and Find Full Text PDF

The Antarctic Peninsula (West Antarctica) marine ecosystem has undergone substantial changes due to climate-induced shifts in atmospheric and oceanic temperatures since the 1950s. Using 25 years of satellite data (1998-2022), this study presents evidence that phytoplankton biomass and bloom phenology in the West Antarctic Peninsula are significantly changing as a response to anthropogenic climate change. Enhanced phytoplankton biomass was observed along the West Antarctic Peninsula, particularly in the early austral autumn, resulting in longer blooms.

View Article and Find Full Text PDF

The ice phenology as a predictor of bloom in vegetation season in temperate lakes.

Front Microbiol

June 2024

Laboratory of Research and Nature Protection, Krzczonów, Poland.

Introduction: Global warming affects air and water temperatures, which impacts the phenology of lakes and aquatic ecosystems. These changes are most noticeable during winter, when the potentially toxic forms its inoculum for annual blooms. Mostly, research has been conducted on alpine lakes, where blooms have persisted for decades, while a few have focused on temperate lakes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!