The study was designed to investigate the mechanism of Riboflavin (RF)-mediated UVA photosensitive oxidation on beef myofibrillar proteins (MP) oxidized at different storage times. To elucidate the direct relationship between RF and protein oxidation, the mechanism of action was analyzed in terms of amino acid and side chain residues, protein structure, and protein oxidative metabolism. Oxidation of MP resulted in significant changes in the levels of carbonyls, sulfhydryls, Lysine, Arginine, Threonin, and Histidine. The oxidized MP secondary structure was changed, fluorescence intensity decreased, and surface hydrophobicity increased. Metabolomics results revealed that RF-mediated UVA photosensitized oxidation is primarily mediated by Riboflavin metabolism and co-regulated with Phenylalanine metabolism. Moreover, with the increase of frozen storage time, Arginine and proline metabolism was inhibited, and the contents of creatine were significantly reduced, which exacerbated MP oxidative damage. The results provide a theoretical basis for unraveling the mechanism of RF-mediated UVA photosensitive oxidation of MP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2025.142788 | DOI Listing |
J Med Chem
January 2025
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
The hypoxic environment of solid tumors significantly diminishes the therapeutic efficacy of oxygen-dependent photodynamic therapy. Developing efficient photosensitizers that operate photoredox catalysis presents a promising strategy to overcome this challenge. Herein, we report the rational design of two rhenium(I) tricarbonyl complexes ( and ) with electron donor-acceptor-donor configuration.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS-Université Orléans-CNES, Orléans Cedex 2 45071, France.
The source of nitrous acid (HONO) and its importance in island or marine environments are poorly understood. Herein, based on comprehensive field measurements at a hilltop on Corsica Island, we find an inverse diel variation of HONO with higher concentrations during daytime. Night-time HONO budget analysis indicates significant HONO formation during air mass transport along the hillside.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.
View Article and Find Full Text PDFFood Res Int
February 2025
College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., Pudong New District, Shanghai 200137, China. Electronic address:
The effects of temperature, humidity, and UV irradiation on the accelerated oil oxidation of chicken seasoning (CS) were investigated, aiming to establish a method for evaluating its storage stability. Key oxidation indicators, such as peroxide value (POV), fatty acid profile, and volatile aldehydes, were measured to assess the degree of oil oxidation. The results indicated that oil oxidation of CS is not significantly accelerated by temperatures of 50-80 °C due to the inhibitory effects of the Maillard reaction.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
The escalating hazards posed by bacterial infections underscore the imperative for pioneering advancements in next-generation antibacterial modalities and treatments. Present therapeutic methodologies are frequently impeded by the constraints of insufficient biofilm infiltration and the absence of precision in pathogen-specific targeting. In this current study, we have used chlorin e6 (Ce6), zeolitic imidazolate framework-8 (ZIF-8), polydopamine (PDA), and UBI peptide to formulate an innovative nanosystem meticulously engineered to confront bacterial infections and effectually dismantle biofilm architectures through the concerted mechanism of photodynamic therapy (PDT)/photothermal therapy (PTT) therapies, including in-depth research, especially for oral bacteria and oral biofilm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!