Enzyme-assisted Rosa davurica mitigates UV-induced skin photodamage by modulating apoptosis through Nrf2/ARE and MAPK/NF-κB pathways.

J Photochem Photobiol B

Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Republic of Korea. Electronic address:

Published: January 2025

Exposure to UV irradiation results in abnormal, extensive apoptosis of skin cells. This excessive cell death can promote inflammation and alter the microenvironment, increasing the risk of skin cancer. Despite extensive research, few materials are effective at simultaneously protecting against both UVA and UVB irradiation. This study aims to develop dual-action material using enzyme-assisted extraction of Rosa davurica Pall (RD) to prevent skin photodamage caused by UVA and UVB irradiation. Three different enzymes were used to assist the extraction of RD, followed by an analysis of the changes in active component levels. Skin photodamage models were established by exposing Normal Human Dermal Fibroblasts (NHDF) and HaCaT cells to UVA and UVB irradiation. The impact of enzyme-assisted extracted RD (ERD) on Reactive Oxygen Species (ROS) production and cell apoptosis was assessed using Flow Cytometry. The effects of ERDs on inflammatory cytokines were measured using ELISA, and RT-PCR was used to evaluate its impact on apoptotic gene expression in photodamaged cells. Furthermore, the impact of ERDs on the Nuclear factor erythroid 2-related factor 2 (Nrf2)/Antioxidant response element (ARE) and Mitogen-activated protein kinases (MAPK)/Nuclear factor-κB (NF-κB) signaling pathways was assessed through Western blot analysis. Finally, the impact of ERDs on full-thickness artificial skin tissue after UV irradiation was assessed using hematoxylin and eosin (H&E) staining. Furthermore, leveraging the experimental results, network pharmacology was utilized to explore the potential of ERDs in preventing skin cancer. Enzyme-assisted extraction enhanced the bioactive components of RD. ERDs effectively reduced ROS levels and suppressed the secretion of Tumor necrosis factor (TNF)-α, Interleukin (IL)-1β, and IL-6 by modulating the Nrf2/ARE and inhibiting the MAPK/NF-κB signaling pathways. This mechanism promoted the expression of the anti-apoptotic gene Bcl-2 and decreased the activity of proapoptotic genes BAX, caspase-3, and caspase-9, thereby countering UV-induced apoptosis. Additionally, staining results demonstrated that ERDs effectively repaired UV-induced photodamage and maintained the integrity of skin structure. ERDs provides comprehensive protection against photodamage induced by UVA and UVB irradiation, demonstrating its potential as an effective photoprotective material and possibly in preventing skin cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2025.113098DOI Listing

Publication Analysis

Top Keywords

uva uvb
16
uvb irradiation
16
skin photodamage
12
skin cancer
12
skin
9
rosa davurica
8
enzyme-assisted extraction
8
impact erds
8
signaling pathways
8
preventing skin
8

Similar Publications

Manufacturing water-stable carboxymethyl cellulose (CMC) films as an alternative to commercial plastics is a promising solution to address plastic pollution. In this study, waste walnut shell (WS) was used as a natural lignocellulosic filler, glycerol as a plasticizer, and citric acid (CA) as a crosslinking agent for preparing high-performance CMC-based bioplastics through a one-pot casting method. When WS content was 12 wt%, the obtained CWGA-12 after optimization exhibited excellent mechanical properties (tensile strength ≈18.

View Article and Find Full Text PDF

Nanocomposite TiO/ZnO/chitosan by method sol-gel for self-cleaning application.

Int J Biol Macromol

January 2025

Department of Physics, Hasanuddin University, Makassar 90245, Indonesia. Electronic address:

TiO/ZnO/Chitosan coated cotton fabric as a self-cleaning, which has been synthesized by various concentrations of TiO: 0.5 g, 1 g, and 2 g through the sol-gel method at pH 9. The self-cleaning test was conducted on TiO/ZnO/Chitosan-coated cotton fabric samples by irradiating for 15 h using UVA-UVB lamps with clothing stain dye.

View Article and Find Full Text PDF

Introduction: Inflammasomes NLRP1 (NLR family pyrin domain containing 1) and NLRP3 are pivotal regulators of the innate immune response, activated by a spectrum of endogenous and exogenous stressors, including ultraviolet radiation (UVR). The precise molecular mechanisms underlying the activation of these inflammasomes remain unclear. Furthermore, the involvement of interleukin-33 (IL-33) in UVR-induced skin carcinogenesis is not well defined.

View Article and Find Full Text PDF

Food packaging industries are growing to meet consumer demand and prevent pollution by adopting significant biopolymer advancements. Therefore, this study aimed to develop functionally active chitosan (CS)/polyvinyl alcohol (PVA)-based biopolymer films and evaluate the effect of Justicia Adhatoda extract (JAE), pure quercetin (Q), and CS-capped quercetin nanoparticles ((Q) NPs) on sustainable bread packaging. CS was successfully loaded onto (Q) by the one-pot method, which was confirmed by light absorption spectroscopy (UV), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD).

View Article and Find Full Text PDF

UV-A exposure is a major risk factor for melanoma, nonmelanoma skin cancer, photoaging, and exacerbation of photodermatoses. Since people spend considerable time in cars daily, inadequate UV-A attenuation by car windows can significantly contribute to the onset or exacerbation of these skin diseases. Given recent market trends in the automobile industry and known impact of car windows on cumulative lifelong UV damage to the skin, there is a need to comparatively evaluate UV transmission across windows in electric vehicles (EV), hybrid vehicles (HV), and gas vehicles (GV) as well as variability based on year of manufacture and mileage to inform car manufacturers and consumers of the potential for UV exposure to the skin based on vehicle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!