The speciation and mobility of arsenic (As) in waters are largely influenced by the colloids; however, the impacts of colloids with different molecular weights (MWs) in water fractions remain largely unknown. Herein, the surface water was fractionated into three colloidal fractions and truly dissolved fraction via cross-flow ultrafiltration. Total As (As(T)) presented mainly as As(V) and existed primarily in the truly dissolved fraction. Arsenic(III) proportions of 3.1 %-8.0 % in various colloids sizes indicated reducing conditions within the colloids particles in surface water around the mine. Negative correlations between EC, TDS and As(T) and As(V) in colloids were found, indicating water properties favored As mobilization in surface water. The aromaticity and humification of DOM reflected endogenous sources in truly dissolved fraction and large-MW colloids and exogenous sources in medium-small-MW colloids. Fourier transform infrared spectroscopy detected As-DOM and As-Fe-DOM formation in colloids, highlighting new aspects of colloids in surface water. Arsenic(T) and As(V) concentrations were positively correlated with terrestrial humic-like components and negatively correlated with microbial humic-like component in colloids, suggesting that in the closed As mine, As tend to be transported from land to surface water together with terrestrial DOM, while endogenous DOM in water affected As mobilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.137094 | DOI Listing |
Mikrochim Acta
January 2025
Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
A novel Ru-FeO nanozyme with enhanced peroxidase-like (POD-like) activity was synthesized through a hydrothermal method. Ru-FeO nanozyme was effectively utilized for the detection of thiophanate-methyl (TM) using a colorimetric technique. The POD-like activity of Ru-FeO was found to be superior compared to FeO, Rh-FeO, and Pd-FeO.
View Article and Find Full Text PDFSci Rep
January 2025
Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei Province, China.
As a key food production base, land use changes in the Jianghan Plain (JHP) significantly affect the surface landscape structure and ecological risks, posing challenges to food security. Assessing the ecological risk of the JHP, identifying its drivers, and predicting the risk trends under different scenarios can provide strategic support for ecological risk management and safeguarding food security in the JHP. In this study, the landscape ecological risk (LER) index was constructed by integrating landscape indices from 2000 to 2020, firstly analyzing its spatiotemporal characteristics, subsequently identifying the key influencing factors by using the GeoDetector model, and finally, simulating the risk changes under the four scenarios by using the Markov-PLUS model.
View Article and Find Full Text PDFSci Rep
January 2025
Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, P. R. China.
The working performance of the discrete functional surface is affected by the surface form. Both the surface form and the geometric function should be considered in tolerance design. However, the tolerance of different parts has different influence on the geometric function and surface form.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Science, Islamic University of Madinah, Al-Jamia, Madinah, 42351, Saudi Arabia.
This study focuses on the synthesis of a novel Cerium-Magnesium (CeO-MgO) binary oxide nanomaterials by a simple co-precipitation process and used to remove harmful pollutants such as Cr(VI), Cu(II), and F. The morphology, phase, crystallite size, thermal stability, functional groups, surface area, and porosity of the synthesized nanomaterial were determined by using XRD, SEM, FTIR, TGA/DTA, and BET studies. The prepared nanomaterials showed adsorption selectivity of Cu(II) ≈ F> Cr(VI) with a high adsorption capacity of 84.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
Introduction of non-DLVO forces by nonionic surfactants brings about fascinating changes in the phase behavior of silica nanosuspensions. We show here that alterations in the interaction and wetting properties of negatively charged silica nanoparticles (Ludox® LS) in the presence of polyethylene oxide-polypropylene oxide-polyethylene oxide-based triblock copolymers called Pluronics lead to the formation of stable o/w Pickering emulsions and interparticle attraction-induced thermoresponsive liquid-liquid phase separations. The results make interesting comparisons with those reported for Ludox® TM nanosuspensions comprising larger silica nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!