Several methods can be used to mitigate coastal erosion, and one of the leading solutions is known as beach nourishment (BN), which involves using dredged material for nourishment, adding sand to extend an eroding beach. Although it has many advantages, the environmental impacts of BN remain poorly understood, especially on plastic pollution, which had not been investigated until this study. We aimed to compare the abundance and distribution of microplastics (MPs) found in intertidal sediments and specimens of the bivalve mollusks Crassostrea brasiliana, Mytella strigata, Perna perna, and Tivela mactroides, collected in two beaches of Vitoria, Southeast of Brazil (da Costa et al., 2023), immediately after a BN process. We collected three replicates of intertidal sediment samples at each one of the five sampling points and 20 individuals of each species at two sampling points. This study found 9057 microplastics, of which 1960 were present in the sediment samples and 7097 in the set of bivalves analyzed, giving a frequency of occurrence of 100 %. The results show an increase of 171 % in the total number of MPs analyzed after the BN process. This significant increase in MPs after the BN indicates that this type of action can lead to a drastic increase in the MPs available in the local marine environment, further increasing the risk of contamination of the regional biota.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2025.178374DOI Listing

Publication Analysis

Top Keywords

intertidal sediment
8
sediment samples
8
sampling points
8
increase mps
8
microplastic pollution
4
pollution beach
4
beach nourishment?
4
nourishment? assessment
4
assessment intertidal
4
sediment bivalves
4

Similar Publications

Significant microplastic accumulation and burial in the intertidal sedimentary environments of the Yellow River Delta.

J Hazard Mater

January 2025

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China. Electronic address:

Estuarine intertidal habitats provide a dynamic and distinctive environment for the transport of microplastics, yet their migration and accumulation in these areas remain poorly understood. Herein, the spatial distribution patterns of microplastics in the estuarine sedimentary environment of the Yellow River Delta were investigated across elevation and depth gradients. Compared to the subtidal and supratidal zones, the estuarine intertidal zone exhibited the highest microplastic abundance in sediment (1027 ± 29 items/kg).

View Article and Find Full Text PDF

Several methods can be used to mitigate coastal erosion, and one of the leading solutions is known as beach nourishment (BN), which involves using dredged material for nourishment, adding sand to extend an eroding beach. Although it has many advantages, the environmental impacts of BN remain poorly understood, especially on plastic pollution, which had not been investigated until this study. We aimed to compare the abundance and distribution of microplastics (MPs) found in intertidal sediments and specimens of the bivalve mollusks Crassostrea brasiliana, Mytella strigata, Perna perna, and Tivela mactroides, collected in two beaches of Vitoria, Southeast of Brazil (da Costa et al.

View Article and Find Full Text PDF

The effect of open-pit bauxite mining on beach sediment contamination in the urban coastal environment of Kuantan City, Malaysia, was investigated. The contents of 11 heavy metals (Pb, Cd, Al, Mn, Cu, Zn, Fe, As, Ni, Cr, and Ag) in 30 samples from Kuantan beach sediment zones (supratidal, intertidal, and subtidal) were determined using inductively coupled plasma optical emission spectrometry followed by contamination indexes, Pearson's correlation analysis, and principal component analysis (PCA). The results indicated that Cd, As, Ni, and Ag values in beach sediment zones were significantly higher compared to background values.

View Article and Find Full Text PDF

Transplantation of seagrass (Zostera noltei) as a potential nature-based solution for the restoration of historically contaminated mudflats.

Sci Total Environ

January 2025

ECOMARE, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal.

Within the UN Decade on Ecosystem Restoration (2021-2030) framework, a Nature-based Solution (NbS) using Zostera noltei transplants was tested to restore a historically contaminated intertidal area. In-situ transplantation relied on patches of seagrass and sediment from a Donor meadow and its evolution was monitored for two years. The evaluation of the transplant success encompassed the seagrass coverage area, seagrass biomass, tissue mercury (Hg) accumulation, and photosynthetic efficiency.

View Article and Find Full Text PDF

Marine oil spills lead to intertidal sediment pollution, causing benthic bioaccumulation and toxicity. However, relatively few studies have been conducted on the effects of crude oil sediment pollution on benthos. In this study, Sinonovacula constricta was used as the research object in a sediment environment to study the accumulation and elimination effects of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!