The MYB-bHLH-NRAMP module modulates the cadmium sensitivity of quinoa by regulating cadmium transport and absorption.

J Hazard Mater

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China. Electronic address:

Published: January 2025

Cadmium (Cd) is one of the most dangerous environmental pollutants and is easily absorbed by food crops. Quinoa is a kind of coarse grain crop with rich nutrition and strong stress resistance, which is easy to accumulate Cd. The increasingly serious soil Cd pollution poses a serious threat to the food safety of quinoa. However, there are very limited reports on Cd absorption and transport in quinoa. The identification and functional analysis of Cd absorption and transport proteins are essential for improving the food safety of quinoa. In this study, the key transporter CqNRAMP1 potentially involved in Cd uptake was identified from quinoa by expression detection. Yeast complementation test found that CqNRAMP1 has the ability to transport metal ions in yeast. Using transgenic technology, it was found that CqNRAMP1 enhanced the sensitivity of quinoa to Cd stress by promoting Cd absorption. The transcription factors CqMYB26 and CqbHLH162 that potentially regulate CqNRAMP1 were identified from the quinoa genome by bioinformatics. Physiological and biochemical, yeast two-hybrid, bimolecular fluorescence complementation and dual luciferase experiments further found that CqMYB26 and CqbHLH162 enhanced the expression of CqNRAMP1 through protein-protein interaction, thus promoting Cd absorption and further enhancing the sensitivity of quinoa to Cd exposure. This study explored the molecular mechanism of CqMYB26-CqbHLH162 promoting the expression of CqNRAMP1 and regulating Cd absorption by physiological, biochemical and molecular biological techniques. These research findings will offer a crucial theoretical foundation and practical insight for cultivating low Cd-accumulating crops and addressing food safety concerns.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.137132DOI Listing

Publication Analysis

Top Keywords

sensitivity quinoa
12
food safety
12
quinoa
9
safety quinoa
8
absorption transport
8
identified quinoa
8
promoting absorption
8
cqmyb26 cqbhlh162
8
physiological biochemical
8
expression cqnramp1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!