Use of magnetite nanoparticles and magnetic separation for the removal of metal(loid)s from contaminated mine soils.

J Hazard Mater

Departamento de Química Orgánica y Bio-Orgánica, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta s/n, Las Rozas de Madrid 28232, Spain. Electronic address:

Published: January 2025

Magnetite nanoparticles have been successfully used for removal and immobilization of contaminants in water, yet their application in soils combined with in situ magnetic separation remains unexplored. We evaluated the effectiveness and optimal conditions for using magnetite nanoparticles combined with magnetic separation to remove metal(loid)s from contaminated mine soils. Soil samples were incubated (15, 45 days) with varying doses of magnetite (0, 25, 50 g kg⁻¹) and moisture (dry, field capacity) and separated using electromagnet or permanent magnet. This technique achieved up to 44 % As, 65 % Cd, 60 % Cu, 47 % Fe, 40 % Mn, 65 % Pb, and 62 % Zn removal, leaving minimal residual magnetite in the soil. These high removal efficiencies were attributed to the nanoparticles' magnetic properties, adsorption capacity and ability to form aggregates with soil particles. Optimal conditions were 25 g kg⁻¹ of magnetite incubated for 45 days at field capacity and separated by the electromagnet. Higher doses (50 g kg⁻¹) offered minimal improvement at increased costs. The combined use of magnetite nanoparticles and in situ magnetic separation demonstrated a low-impact and cost-effective method for reducing metal(loid) concentrations to levels that facilitate subsequent soil remediation strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.137081DOI Listing

Publication Analysis

Top Keywords

magnetite nanoparticles
16
magnetic separation
16
metalloids contaminated
8
contaminated mine
8
mine soils
8
situ magnetic
8
optimal conditions
8
incubated days
8
field capacity
8
capacity separated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!