Evolution of interspecific interactions underlying the nonlinear relationship between active biomass and pollutant degradation capacity in bioelectrochemical systems.

Water Res

Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:

Published: December 2024

This study proposes a switching operating mode that alternates between microbial fuel cell (MFC) and microbial electrolysis cell (MEC) to restore the biofilm activity and organic pollutant degradation capacity in bioelectrochemical systems (BESs) during prolonged operation. After the model switching, the toluene degradation kinetics in BESs equipped with graphite sheet (GS) and polyaniline@carbon nanotubes (PANI@CNTs) bioanodes were elevated by 2.10 and 3.14 times, respectively. Nevertheless, the amount of active biomass in the GS and PANI@CNTs bioanodes only increased by 1.04 and 1.05 times, with the PANI@CNTs bioanode consistently outperforming in hierarchical biofilm activity and redox properties. Additionally, the distribution of functional genes across the dominant genera revealed their roles in extracellular electron transfer and the four steps of toluene degradation (primary oxidation, ring-opening, intermediate oxidation, and tricarboxylic acid cycle). Furthermore, the cooperation of substrate exchange among Pseudomonas, Alicycliphilus, and Acidovorax in the MFC mode evolved to interactions among Acidovorax, Alicycliphilus, and Geobacter in the MEC mode, which attributed to the nonlinear relationship between active biomass and pollutant degradation capacity. These results provide insights into the operating mode and interspecific interactions of BESs, with implications for practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.123071DOI Listing

Publication Analysis

Top Keywords

active biomass
12
pollutant degradation
12
degradation capacity
12
interspecific interactions
8
nonlinear relationship
8
relationship active
8
biomass pollutant
8
capacity bioelectrochemical
8
bioelectrochemical systems
8
operating mode
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!