Transmission-blocking vaccines (TBVs) targeting sexual-stage antigens represent a critical tool for malaria control and elimination through inhibiting parasite development within mosquitoes. P230, displayed on the surface of gametocytes and gametes, plays a crucial role in gamete fertilization and is one of the leading TBV candidates for both Plasmodium falciparum and P. vivax. Antibodies induced by immunization with a recombinant P. falciparum protein encompassing a portion of N-terminal prodomain and domain 1 (Pfs230D1M) have revealed strong transmission-reducing activity (TRA) in preclinical studies. While a recombinant Pvs230D1, the P. vivax homolog of Pfs230D1M, has not been evaluated in preclinical immunogenicity studies, both Pfs230D1M and Pvs230D1 are currently scheduled for evaluation in clinical trials. In this study, we developed DNA vaccines encoding Pfs230D1M and Pvs230D1 for a side-by-side comparison of their immunogenicity. Potent antibody responses were induced in mice immunized with each DNA vaccine delivered by in vivo electroporation (EP). Anti-Pfs230D1M IgG exhibited potent dose-dependent TRA in a complement-dependent manner in standard membrane feeding assays (SMFA). In contrast, anti-Pvs230D1 IgG exhibited only moderate TRA in direct membrane feeding assay (DMFA) using blood from multiple P. vivax-infected donors. Antibodies induced by the Pfs230D1M DNA vaccine revealed a strong IgG1 bias and higher avidity as compared to a balanced IgG1/IgG2 response and lower antibody avidity by the Pvs230D1 DNA vaccine. Our results demonstrate the potential of both Pfs230D1M and Pvs230D1 DNA vaccines as TBV candidates against P. falciparum and P. vivax, and provide a rationale for future optimization to enhance the efficacy of DNA vaccines based on Pfs230 and Pvs230.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2024.126696DOI Listing

Publication Analysis

Top Keywords

dna vaccines
16
pfs230d1m pvs230d1
16
dna vaccine
12
vaccines encoding
8
tbv candidates
8
falciparum vivax
8
antibodies induced
8
revealed strong
8
igg exhibited
8
membrane feeding
8

Similar Publications

A Bibliometric Analysis on Multi-epitope Vaccine Development Against SARS-CoV-2: Current Status, Development, and Future Directions.

Mol Biotechnol

January 2025

Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.

The etiological agent for the coronavirus disease 2019 (COVID-19), the SARS-CoV-2, caused a global pandemic. Although mRNA, viral-vectored, DNA, and recombinant protein vaccine candidates were effective against the SARS-CoV-2 Wuhan strain, the emergence of SARS-CoV-2 variants of concern (VOCs) reduced the protective efficacies of these vaccines. This necessitates the need for effective and accelerated vaccine development against mutated VOCs.

View Article and Find Full Text PDF

During the COVID-19 pandemic, heterologous vaccination strategies were employed to alleviate the strain on vaccine supplies. The Thailand Ministry of Health adopted these strategies using vector, inactivated, and mRNA vaccines. However, this approach has introduced challenges for SARS-CoV-2 sero-epidemiology studies.

View Article and Find Full Text PDF

Cancer vaccines: platforms and current progress.

Mol Biomed

January 2025

Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.

Cancer vaccines, crucial in the immunotherapeutic landscape, are bifurcated into preventive and therapeutic types, both integral to combating oncogenesis. Preventive cancer vaccines, like those against HPV and HBV, reduce the incidence of virus-associated cancers, while therapeutic cancer vaccines aim to activate dendritic cells and cytotoxic T lymphocytes for durable anti-tumor immunity. Recent advancements in vaccine platforms, such as synthetic peptides, mRNA, DNA, cellular, and nano-vaccines, have enhanced antigen presentation and immune activation.

View Article and Find Full Text PDF

Transmission-blocking vaccines (TBVs) targeting sexual-stage antigens represent a critical tool for malaria control and elimination through inhibiting parasite development within mosquitoes. P230, displayed on the surface of gametocytes and gametes, plays a crucial role in gamete fertilization and is one of the leading TBV candidates for both Plasmodium falciparum and P. vivax.

View Article and Find Full Text PDF

Cervical cancer ranks as the fourth most common cancer among women globally, posing a significant mortality risk. Persistent infection with high-risk human papillomavirus (HPV) is the primary instigator of cervical cancer development, often alongside co-infection with other viruses, precipitating various malignancies. This study aimed to explore recent biotechnological advances in understanding HPV infection dynamics, host interactions, and its role in oncogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!