In this study, we developed an Evidential Ensemble Neural Network based on Deep learning and Diffusion MRI, namely DDEvENet, for anatomical brain parcellation. The key innovation of DDEvENet is the design of an evidential deep learning framework to quantify predictive uncertainty at each voxel during a single inference. To do so, we design an evidence-based ensemble learning framework for uncertainty-aware parcellation to leverage the multiple dMRI parameters derived from diffusion MRI. Using DDEvENet, we obtained accurate parcellation and uncertainty estimates across different datasets from healthy and clinical populations and with different imaging acquisitions. The overall network includes five parallel subnetworks, where each is dedicated to learning the FreeSurfer parcellation for a certain diffusion MRI parameter. An evidence-based ensemble methodology is then proposed to fuse the individual outputs. We perform experimental evaluations on large-scale datasets from multiple imaging sources, including high-quality diffusion MRI data from healthy adults and clinically diffusion MRI data from participants with various brain diseases (schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, Parkinson's disease, cerebral small vessel disease, and neurosurgical patients with brain tumors). Compared to several state-of-the-art methods, our experimental results demonstrate highly improved parcellation accuracy across the multiple testing datasets despite the differences in dMRI acquisition protocols and health conditions. Furthermore, thanks to the uncertainty estimation, our DDEvENet approach demonstrates a good ability to detect abnormal brain regions in patients with lesions that are consistent with expert-drawn results, enhancing the interpretability and reliability of the segmentation results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compmedimag.2024.102489DOI Listing

Publication Analysis

Top Keywords

diffusion mri
24
evidence-based ensemble
12
ensemble learning
8
brain parcellation
8
parcellation diffusion
8
deep learning
8
mri ddevenet
8
learning framework
8
mri data
8
parcellation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!