A magnetic vortex (MV) is one of the fundamental and topologically nontrivial spin textures in condensed matter physics. Magnetic vortices are usually the ground states in geometrically restricted ferromagnets with zero magnetocrystalline anisotropy. Magnetic vortices have recently been proposed for use in a variety of spintronics applications due to their resistance to thermal perturbations, flexibility in changing core polarity, simple patterning procedure, and potential uses in magnetic data storage with substantial density, sensors for the magnetic field, devices for logic operations, and other related fields. The data storage and computing capabilities of vortex-based devices are highly integrated and energy-efficient, with low drive current requirements. Thus, a comprehensive understanding ranging from basic physics to real-world applications is necessary to realize these devices. This article provides an overview of the recent developments in our knowledge of magnetic vortices and computing and data storage technologies that are based on them. This thorough analysis aims to advance knowledge and awareness of the possibilities of vortex-based spintronic devices in modern technologies. .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ada842 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!