Marine and atmospheric transport modeling supporting nuclear preparedness in Norway: Recent achievements and remaining challenges.

Sci Total Environ

Center for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O.Box 5003, NO-1432 Ås, Norway.

Published: January 2025

Numerical transport models are important tools for nuclear emergency decision makers in that they rapidly provide early predictions of dispersion of released radionuclides, which is key information to determine adequate emergency protective measures. They can also help us understand and describe environmental processes and can give a comprehensive assessment of transport and transfer of radionuclides in the environment. Transport of radionuclides in air and ocean is affected by a number of different physico-chemical processes. Along with uncertainty arising from the input data, the model estimates will therefore involve a combination of numerous uncertain factors, caused by knowledge gaps and assumptions in the model system. As discussed in this paper, the major sources to uncertainty affecting the model results are release descriptions, driving data, process descriptions and parameters. Here, we give a synthesis of the most important improvements in atmospheric and marine models achieved through the CERAD programme. In the atmospheric transport model, an important improvement has been inclusion of uncertainties in the dispersion estimates. Recent developments also include adaption to high resolution forcing data and ensemble forecasts, inversion methods and long term analyses. Case studies clearly show improved predictions from ensemble mean values compared to single deterministic runs, and promises for future upgrades of preparedness decision support systems. A major improvement in the marine model system was implementation of dynamic speciation including transformation of species, identifying particle size and parameterizations to be key factors affecting radionuclide distribution. The model system was further developed in a case study involving the impact of changing environmental factors on the transport of aluminium river run-off to an estuary in southeastern Norway. Suggestions for future improvements include implementation of an operational preparedness model for marine transport, better quantification of uncertainties using ensemble methods and improved source identification with further development of inverse transport.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.178161DOI Listing

Publication Analysis

Top Keywords

model system
12
transport
8
atmospheric transport
8
model
7
marine
4
marine atmospheric
4
transport modeling
4
modeling supporting
4
supporting nuclear
4
nuclear preparedness
4

Similar Publications

Psychosocial risks and mental health of preschool care providers in Kuala Lumpur, Malaysia: a cross-sectional study.

BMC Psychol

January 2025

Health Department of Kuala Lumpur and Putrajaya, Health office of Lembah Pantai District, Ministry of Health, Kuala Lumpur, Malaysia.

Background: Child maltreatment in daycare is a public health issue. As childcare is stressful, high care provider negativity independently predicts more internalizing behaviour problems, affecting children's psycho-neurological development. This study aimed to determine psychosocial factors associated with the mental health of preschool care providers in Kuala Lumpur.

View Article and Find Full Text PDF

Mesenchymal stromal cells promote the formation of lung cancer organoids via Kindlin-2.

Stem Cell Res Ther

January 2025

Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.

Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.

View Article and Find Full Text PDF

Background: Kazakhstan inherited the Semashko health system model, known for the centralized adoption of rules at the Ministry of Health (MoH) level that regulate the healthcare system. In 2019 MoH established a national framework with indicators aimed at collecting qualitative and quantitative data from healthcare organizations as part of their annual self-evaluation, and biannual external evaluation by the National Research Center for Health Development (NRCHD). The purpose of this study was to pilot the MoH framework on rational use of medicines and evaluate its effects on medicine use practices in health care organizations and at the national level.

View Article and Find Full Text PDF

Background: Unicompartmental knee arthroplasty (UKA) is a surgical treatment for knee osteoarthritis associated with lower morbidity compared with total knee arthroplasty (TKA) in patients with isolated unicompartmental knee arthritis. As disparities have been noted broadly in arthroplasty care, it follows that such disparities might be present in the utilization of UKA relative to TKA. This study therefore examined racial/ethnic, socioeconomic, and payer status differences in utilization of UKA.

View Article and Find Full Text PDF

Plasma S100β is a predictor for pathology and cognitive decline in Alzheimer's disease.

Fluids Barriers CNS

January 2025

Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.

Background: Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment.

Methods: We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!