Microwave welding with SiCNW/PMMA nanocomposite thin films: Enhanced joint strength and performance.

Nanotechnology

Universiti Teknologi PETRONAS, Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, MALAYSIA, Seri Iskandar, Perak, 32610, MALAYSIA.

Published: January 2025

Most previously reported susceptors for microwave welding are in powder form. In this study, a thin-film susceptor was employed due to its uniform heating rate and ease of handling. Silicon carbide nanowhisker (SiCNW) were incorporated into a poly(methyl methacrylate) (PMMA) matrix to create a nanocomposite thin film, which served as the susceptor. The microwave welding process involved three straightforward steps: fabrication of the PMMA/SiCNW nanocomposite thin film, application of the nanocomposite film to the target area, and subsequent microwave heating. Upon cooling, a robust microwave-welded joint was formed. The mechanical properties and microstructure of the welded joints were characterized using single-lap shear tests, three-point bending tests, and scanning electron microscopy (SEM). Results demonstrated that the shear strength and elastic modulus of the welded joints were optimized with increased heating time and SiCNW filler loading. This optimization is attributed to the formation of a SiCNW-filled polypropylene (PP) nanocomposite layer of increasing thickness at the welded joint interface. However, the incorporation of SiCNW also constrained the mobility of the PP chains, reducing the joint's flexibility. Furthermore, the welded joint formed with the PMMA/SiCNW nanocomposite thin-film susceptor exhibited an 18.82% improvement in shear strength compared to joints formed with a powdered SiCNW susceptor. This study not only demonstrates the potential of PMMA/SiCNW nanocomposite thin films as efficient susceptors for microwave welding but also paves the way for developing high-performance polymer-based composite joints with improved mechanical properties for applications in the automotive, aerospace, and construction industries. .

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ada7ffDOI Listing

Publication Analysis

Top Keywords

microwave welding
16
nanocomposite thin
16
pmma/sicnw nanocomposite
12
thin films
8
susceptors microwave
8
thin-film susceptor
8
thin film
8
joint formed
8
mechanical properties
8
welded joints
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!