Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options. Therefore, it is critical to identify novel actionable alterations in SDH-deficient GIST.
Patients And Methods: We performed a single-center, retrospective analysis of patients with SDH-deficient GIST together with next-generation sequencing (NGS) analysis from their respective tumor samples to identify mutations and copy number alterations and chromosomal alterations. NGS-tailored treatment was implemented whenever possible.
Results: Seventeen tumor samples from 14 patients with SDH-deficient GIST underwent NGS. Mutational load was low, although three patients (21%) displayed molecular events in relapse samples leading to PI3K/mTOR pathway hyperactivation. mTOR inhibition with everolimus obtained a sustained tumor response in a heavily pretreated patient. Other alterations, largely present in late-stage patients, uncovered genes involved in cell cycle regulation, telomere maintenance, and DNA damage repair. Chromosomal arm-level alterations differed from the canonical cytogenetic progression in KIT/PDGFRA-mutant GIST.
Conclusion: This molecular landscape of SDH-deficient GIST uncovers novel molecular alterations, mostly in relapse and/or previously pretreated patients. The identification of genetic events leading to PI3K/mTOR dysregulation together with the remarkable activity of everolimus in one patient showcases the clinical relevance of this pathway, validates the utility of NGS in this population, and poses everolimus as a novel therapeutic alternative. Several other alterations were found at the genetic and genomic levels, underscoring novel biological processes likely involved during tumor evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1200/PO-24-00497 | DOI Listing |
JCO Precis Oncol
January 2025
Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.
View Article and Find Full Text PDFFront Oncol
November 2024
Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Adv Anat Pathol
November 2024
Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL.
The diagnosis of gastrointestinal stromal tumors (GISTs) is generally straightforward using a combination of histologic evaluation and pertinent immunohistochemical staining with CD117/kit and DOG-1 (discovered on GIST) antibodies. However, this tumor can be challenging in cases with an unusual morphology, in limited biopsies, for those in uncommon sites, post-treatment, and when other neoplasms express CD117/kit and DOG-1, thereby mimicking GIST. Finding epithelioid GISTs in the stomach in younger patients should prompt testing for succinate dehydrogenase (SHD)-deficiency using immunohistochemical staining for subunit B (SDHB).
View Article and Find Full Text PDFClin Cancer Res
January 2025
Harvard Medical School, Boston, Massachusetts.
Purpose: Preclinical studies have identified molecular correlates of sensitivity to ATR inhibition. This translational study was designed to test the ATR inhibitor berzosertib in patients with advanced solid tumors carrying alterations in ATRX, ataxia-telangiectasia-mutated (ATM), genes conferring replication stress (RS), or SDH.
Patients And Methods: Patients were recruited to four cohorts: T1: ATRX-mutant leiomyosarcoma; T2: ATM-mutant solid tumors; T3: solid tumors with mutations in RS-associated genes; and T4: SDH-deficient gastrointestinal stromal tumors (GIST).
Purpose: SDHA mutations are the most common cause of succinate dehydrogenase (SDH)-deficient GIST. Enhanced cancer surveillance of individuals carrying a known pathogenic germline SDHA mutation has the potential to detect early-stage tumors, allowing for improved patient outcomes. However, more than 95% of the >1,000 SDHA missense variants listed in ClinVar are variants of uncertain significance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!