Spiking neural networks (SNNs) have attracted significant interest in the development of brain-inspired computing systems due to their energy efficiency and similarities to biological information processing. In contrast to continuous-valued artificial neural networks, which produce results in a single step, SNNs require multiple steps during inference to achieve a desired accuracy level, resulting in a burden in real-time response and energy efficiency. Inspired by the tradeoff between speed and accuracy in human and animal decision-making processes, which exhibit correlations among reaction times, task complexity, and decision confidence, an inquiry emerges regarding how an SNN model can benefit by implementing these attributes. Here, we introduce a theory of decision making in SNNs by untangling the interplay between signal and noise. Under this theory, we introduce a new learning objective that trains an SNN not only to make the correct decisions but also to shape its confidence. Numerical experiments demonstrate that SNNs trained in this way exhibit improved confidence expression, reduced trial-to-trial variability, and shorter latency to reach the desired accuracy. We then introduce a stopping policy that can stop inference in a way that further enhances the time efficiency of SNNs. The stopping time can serve as an indicator to whether a decision is correct, akin to the reaction time in animal behavior experiments. By integrating stochasticity into decision making, this study opens up new possibilities to explore the capabilities of SNNs and advance SNNs and their applications in complex decision-making scenarios where model performance is limited.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1162/neco_a_01733 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!