Utilizing the sparsity of the electronic structure problem, fragmentation methods have been researched for decades with great success, pushing the limits of ab initio quantum chemistry ever further. Recently, this set of methods has been expanded to include a fundamentally different approach called excitonic renormalization, providing promising initial results. It builds a supersystem Hamiltonian in a second-quantized-like representation from transition-density tensors of isolated fragments, contracted with biorthogonalized molecular integrals. This makes the method fully modular in terms of the quantum chemical methods applied to each fragment and enables massive truncation of the state-space required. Proof-of-principle tests have previously shown that an excitonically renormalized Hamiltonian can efficiently scale to hundreds of fragments, but the ad hoc approach to building the Hamiltonian was not scalable to larger fragments. On the other hand, initial tests of the originally proposed modular Hamiltonian build, presented here, show the accuracy to be poor on account of its non-Hermitian character. In this study, we bridge the gap between these with an operator expansion that is shown to converge rapidly, tending toward a Hermitian Hamiltonian while retaining the modularity, yielding an accurate, scalable method. The accuracy is tested here for a beryllium dimer. At distances near equilibrium and longer, the zeroth-order method is comparable to coupled-cluster singles, doubles, and perturbative triples and the first-order method is comparable to full configuration interaction (FCI). The second-order method agrees with FCI for distances well up the inner repulsive wall of the potential. Deviations occurring at shorter bond distances are discussed along with approaches to scaling to larger fragments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0238707 | DOI Listing |
J Chem Phys
December 2024
Department of Chemistry, University of the Pacific, Stockton, California 95204, USA.
Utilizing the sparsity of the electronic structure problem, fragmentation methods have been researched for decades with great success, pushing the limits of ab initio quantum chemistry ever further. Recently, this set of methods has been expanded to include a fundamentally different approach called excitonic renormalization, providing promising initial results. It builds a supersystem Hamiltonian in a second-quantized-like representation from transition-density tensors of isolated fragments, contracted with biorthogonalized molecular integrals.
View Article and Find Full Text PDFNano Lett
January 2025
Institute for Experimental and Applied Physics, University of Regensburg, 93040 Regensburg, Germany.
Understanding and controlling the electronic properties of two-dimensional materials are crucial for their potential applications in nano- and optoelectronics. Monolayer transition metal dichalcogenides have garnered significant interest due to their strong light-matter interaction and extreme sensitivity of the band structure to the presence of photogenerated electron-hole pairs. In this study, we investigate the transient electronic structure of monolayer WS on a graphene substrate after resonant excitation of the A-exciton using time- and angle-resolved photoemission spectroscopy.
View Article and Find Full Text PDFNano Lett
December 2024
Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States.
ACS Nano
November 2024
Department of Physics, University of Hong Kong, Hong Kong SAR 999077, China.
Excitons in two-dimensional (2D) semiconductors are particularly exciting, as reduced screening and dimensional confinement foster their pronounced many-body interactions. Optical pumping is typically used to create excitons so as to study their properties, but at the same time such pumping can also create unbound charge carriers. This makes experimental determination of the exciton-exciton interactions difficult.
View Article and Find Full Text PDFNanoscale
November 2024
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia.
The coherent spin dynamics of electrons and holes in CsPbI perovskite nanocrystals in a glass matrix are studied by the time-resolved Faraday ellipticity technique in magnetic fields up to 430 mT across a temperature range from 6 K to 120 K. The Landé -factors and spin dephasing times are evaluated from the observed Larmor precession of electron and hole spins. The nanocrystal size in the three studied samples varies from about 8 to 16 nm, resulting in exciton transition varying from 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!