Human performance in perceptual and visuomotor tasks is enhanced when stimulus motion follows the laws of gravitational physics, including acceleration consistent with Earth's gravity, g. Here we used a manual interception task in virtual reality to investigate the effects of trajectory shape and orientation on interception timing and accuracy. Participants punched to intercept a ball moving along one of four trajectories that varied in shape (parabola or tent) and orientation (upright or inverted). We also varied the location of visual fixation such that trajectories fell entirely within the lower or upper visual field. Reaction times were faster for more natural shapes and orientations, regardless of visual field. Overall accuracy was poorer and movement time was longer for the inverted tent condition than the other three conditions, perhaps because it was imperfectly reminiscent of a bouncing ball. A detailed analysis of spatial errors revealed that interception endpoints were more likely to fall along the path of the final trajectory in upright vs. inverted conditions, suggesting stronger expectations regarding the final trajectory direction for these conditions. Taken together, these results suggest that the naturalness of the shape and orientation of a trajectory contributes to performance in a virtual interception task.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725989 | PMC |
http://dx.doi.org/10.1167/jov.25.1.11 | DOI Listing |
Comput Inform Nurs
January 2025
Author Affiliations: Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital (Dr Chang), Department of Internal Medicine, School of Medicine, College of Medicine (Dr Chang), School of Nursing, College of Nursing (Tsai, Dr Huang), and Department of Nursing (Tsai, Lu, Huang) and Research Center in Nursing Clinical Practice (Tsai, Dr Huang), Wan Fang Hospital, Department of Nursing (Chan), and Cochrane Taiwan, Taipei Medical University (Dr Huang), Taipei, Taiwan; Department of Nursing, Faculty of Medicine, Universitas Pendidikan Ganesha, Bali, Indonesia (Gautama).
Virtual reality technology offers an extended and repeatable environment for delivering digital learning and training. This study investigated the acceptance of a smartphone virtual reality training program among nursing students for chemotherapy administration using a modified Technology Acceptance Model. The teaching materials for the chemotherapy administration process were designed using smartphone virtual reality to provide prelicensure students with an opportunity to learn procedural steps in a controlled, risk-free environment.
View Article and Find Full Text PDFPLoS One
January 2025
Division of Ophthalmology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America.
Purpose: The purpose of this systematic review was to consolidate and summarize available data comparing virtual reality perimetry (VRP) with standard automated perimetry (SAP) in adults with glaucoma. Understanding the utility and diagnostic performance of emerging VRP technology may expand access to visual field testing but requires evidence-based validation.
Methods: A systematic literature search was conducted in 3 databases (PubMed Central, Embase, and Cochrane Central Register of Controlled Trials) from the date of inception to 10/09/2024.
Background: With the increasing availability and use of digital tools such as virtual reality in medical education, there is a need to evaluate their impact on clinical performance and decision-making among healthcare professionals. The Trauma SimVR study is investigating the efficacy of virtual reality training in the context of traumatic in-hospital cardiac arrest.
Methods And Analysis: This study protocol (clinicaltrials.
J Vis
January 2025
Vision and Control of Action (VISCA) Group, Department of Cognition, Development and Psychology of Education, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.
The characterization of how precisely we perceive visual speed has traditionally relied on psychophysical judgments in discrimination tasks. Such tasks are often considered laborious and susceptible to biases, particularly without the involvement of highly trained participants. Additionally, thresholds for motion-in-depth perception are frequently reported as higher compared to lateral motion, a discrepancy that contrasts with everyday visuomotor tasks.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Key Laboratory of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China.
Diffractive optical elements (DOEs) are specialized optical components that manipulate light through diffraction for various applications, including holography, spectroscopy, augmented reality (AR) and virtual reality (VR), and light detection and ranging (LiDAR). The performance of DOEs is highly determined by fabricated materials and fabrication methods, in addition to the numerical simulation design. This paper presents a microfabrication technique optimized for DOEs, enabling precise control of critical parameters, such as refractive index (RI) and thickness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!