In the context of evolutionary time, cities are an extremely recent development. Although our understanding of how urbanization alters ecosystems is well-developed, empirical work examining the consequences of urbanization on adaptive evolution remains limited. To facilitate future work, we offer candidate genes for one of the most prominent urban carnivores across North America. The coyote (Canis latrans) is a highly adaptable carnivore distributed throughout urban and non-urban regions in North America. As such, the coyote can serve as a blueprint for understanding the various pathways by which urbanization can influence the genomes of wildlife via comparisons along urban-rural gradients, as well as between metropolitan areas. Given the close evolutionary relationship between coyotes and domestic dogs, we leverage the well-annotated dog genome and highly conserved mammalian genes from model species to outline how urbanization may alter coyote genotypes and shape coyote phenotypes. We identify variables that may alter selection pressure for urban coyotes and offer suggestions of candidate genes to explore. Specifically, we focus on pathways related to diet, health, behavior, cognition, and reproduction. In a rapidly urbanizing world understanding how species cope and adapt to anthropogenic change can facilitate the persistence of, and coexistence with, these species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/gbe/evae279 | DOI Listing |
J Agric Food Chem
January 2025
Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China.
Preharvest sprouting (PHS) is an unfavorable trait in cereal crops that significantly reduces grain yield and quality. However, the regulatory mechanisms underlying this complex trait are still largely unknown. Here, 276 rice accessions from the 3000 Rice Genomes Project were used to perform a genome-wide association study.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI.
Purpose: Although lung cancer is one of the most common malignancies, the underlying genetics regarding susceptibility remain poorly understood. We characterized the spectrum of pathogenic/likely pathogenic (P/LP) germline variants within DNA damage response (DDR) genes among lung cancer cases and controls in non-Hispanic Whites (NHWs) and African Americans (AAs).
Materials And Methods: Rare, germline variants in 67 DDR genes with evidence of pathogenicity were identified using the ClinVar database.
PLoS Negl Trop Dis
January 2025
Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America.
Background: Machupo virus (MACV) is a New World mammarenavirus (hereafter referred to as "arenavirus") and the etiologic agent of Bolivian hemorrhagic fever (BHF). No vaccine or antiviral therapy exists for BHF, which causes up to 35% mortality in humans. New World arenaviruses evolve separately in different locations.
View Article and Find Full Text PDFPLoS One
January 2025
Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh.
The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Science and Engineering, University of Chittagong, Chattogram, Bangladesh.
Rice blast, caused by Magnaporthe oryzae, is one of the most destructive fungal diseases in rice, resulting in major economic losses worldwide. Genetic and genomic studies have identified key genes and proteins, such as AvrPik variants and MAX proteins, that are crucial for the pathogen's virulence. These effector proteins interact with specific alleles of the Pik gene family on rice chromosome 11, modulating the host's immune response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!