A modular approach was developed for the first catalytic asymmetric total syntheses of naturally occurring C terpene quinone methides and their non-natural stereoisomers, which feature the presence of an unprecedented spiro[4.4]nonane-containing 6-6-6-5-5-3 hexacyclic skeleton. Resting on a chiral phosphinamide-catalyzed enantioselective reduction of 2,2-disubstituted cyclohexane-1,3-dione, a concise route for the synthesis of enantioenriched 6-6 bicyclic fragment was developed. The 6-6 ring fragment and the five-membered ring fragment were unified via a metal-halogen exchange/intermolecular addition reaction. Subsequently, the central 6-5 bicyclic ring system was constructed through a Michael/aldol cascade. The successful establishment of these strategic transformations allowed for an efficient and rapid construction of spiroannulated 6-6-6-5-5 pentacarbocyclic core via a convergent manner. Finally, the total syntheses of naturally occurring (+)-chamaecydin and (+)-isochamaecydin and their corresponding 1',5'-stereoisomers have been achieved divergently by appropriately orchestrating the reaction sequence including isopropyl incorporation, oxidation state adjustment, and carbonyl group-directed regio- and stereoselective cyclopropanation at a late stage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202423944 | DOI Listing |
Chem Asian J
January 2025
Nanjing University, School of Chemistry and Chemial Engineering, 163 Xianlin Avenue, 210023, Nanjing, CHINA.
Axial chiral biaryl skeletons are widely found in biologically active molecules, catalysts and chiral functional materials. However, highly catalytic stereoselective synthesis of tetra-ortho-substituted biaryls remains a challenging task. In this paper, we describe an efficient approach for construction of axially tetra-ortho-substituted biaryls via Suzuki-Miyaura coupling in the presence of a chiral monophosphate ligand developed by ourselves.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Anhui Normal University, School of Chemistry and Materials Science, 189 Jiuhua South Road, 241002, Wuhu, CHINA.
Achieving axially chiral biaryl dialdehydes through asymmetric catalysis remains significantly challenging due to the lack of efficient strategies. In this report, we developed a rhodium-catalyzed enantioselective C-H amidation through chiral transient directing group strategy. With this new approach, a series of axially chiral amido dialdehydes were achieved in up to 86% yields with 99.
View Article and Find Full Text PDFOrg Lett
January 2025
Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
We disclose herein a chiral phosphoric-acid-catalyzed enantioselective addition reaction of alcohols to fluoroalkylated biaryl 1,3-oxoazepines, which furnished a wide range of bridged biaryls bearing a fluoroalkylated quaternary carbon stereocenter on the seven-membered ring in high yields (up to 99%) with excellent enantioselectivities (up to 98% ee). Our method can be used for the modification of several natural products and bioactive molecules. Preliminary studies revealed that the products obtained in this reaction exhibit good in vitro bioactivities against two plant pathogens.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
Pt/CeO single-atom catalysts are attractive materials for CO oxidation but normally show poor activity below 150 °C mainly due to the unicity of the originally symmetric PtO structure. In this work, a highly active and stable Pt/CeO single-site catalyst with only 0.1 wt % Pt loading, achieving a satisfied complete conversion of CO at 150 °C, can be obtained through fabricating asymmetric PtO-oxygen vacancies (O) dual-active sites induced by well-dispersed NbO clusters.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.
Chiral medium-sized rings, albeit displaying attractive properties for drug development, suffer from numerous synthetic challenges due to difficult cyclization steps that must take place to form these unusually strained, atropisomeric rings from sterically crowded precursors. In fact, catalytic enantioselective cyclization methods for the formation of chiral seven-membered rings are unknown, and the corresponding eight-membered variants are also sparse. In this work, we present a substrate preorganization-based, enantioselective, organocatalytic strategy to construct seven- and eight-membered rings featuring chirality that is intrinsic to the ring in the absence of singular stereogenic atoms or single bond axes of chirality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!