A novel solid electrolyte sensor with considerably improved response times is presented. The new so-called eFIPEX [etched flux (Φ) probe experiment] is based on the FIPEX [flux (Φ) probe experiment] sensor applied for the measurement of molecular and atomic oxygen concentrations. A main application is the measurement of atmospheric atomic oxygen aboard sounding rockets up to altitudes of 250 km. eFIPEX employs a new manufacturing technique for its electrodes combining two manufacturing steps-the deposition of platinum films with a polyol process and electrochemical etching to carve out the electrode geometry. Selectivity toward atomic oxygen is achieved through gold plating. All work steps can be completed in ambient air. Electrodes with thicknesses of 200 nm to 1.5 μm are manufactured and characterized with optical and electron microscopy as well as with energy dispersive x-ray spectroscopy. It is shown that the significantly faster response times are related to pores in the platinum film reaching down to the substrate. The new eFIPEX were flown in comparison with conventional FIPEX sensors on the PMWE-2 sounding rocket flight showing significantly improved performance. Due to the easier fabrication and the superior transient behavior, this new sensor system will be preferentially used in future missions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0238213 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Hunan University, College of Materials Science and Engineering, South Lushan Road 2#, 410082, China, 410082, Changsha, CHINA.
Renewable electricity-driven electrochemical reduction of CO2 offers a promising route for production of high-value ethanol. However, the current state of this technology is hindered by low selectivity and productivity, primarily due to limited understanding of the atomic-level active sites involved in ethanol formation. Herein, we identify that the interfacial oxygen vacancy-neighboring Cu (Ov-Cu) pair sites are the active sites for CO2 electroreduction to ethanol.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China. Electronic address:
Transition metal-nitrogen-carbon (MNC) based on 3d metal atoms as promising non-precious metal catalysts have been extensively exploited for oxygen reduction reaction (ORR), but MNC with 4f rare earth metals have been largely ignored, most likely due to their large atomic radii that are difficult to coordinate with N dopants using conventional precursors. Herein, atomically dispersed dysprosium-nitrogen-carbon (DyNC) nanosheets were developed via the pyrolysis of anitrogen-containing chelate compound of 2, 4, 6-Tri (2-pyridyl) 1, 3, 5-triazine (TPTZ) ligand with Dy under the assistance of molten NaCl. The as-synthesized DyNC features specific moieties of single Dy atom coordinated by N and O as active sites for ORR, displaying excellent performance.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
High Enthalpy Flow Diagnostics Group (HEFDiG), Institute of Space Systems, University of Stuttgart, Pfaffenwaldring 29, 70569 Stuttgart, Germany.
A novel solid electrolyte sensor with considerably improved response times is presented. The new so-called eFIPEX [etched flux (Φ) probe experiment] is based on the FIPEX [flux (Φ) probe experiment] sensor applied for the measurement of molecular and atomic oxygen concentrations. A main application is the measurement of atmospheric atomic oxygen aboard sounding rockets up to altitudes of 250 km.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Weijin Road 94, 300071, Tianjin, CHINA.
Chem Sci
December 2024
College of Science, Engineering and Environment, University of Newcastle Callaghan NSW 2308 Australia.
The inductive effect is a central concept in chemistry and is often exemplified by the p values of acetic acid derivatives. The reduction in p is canonically attributed to the reduction in the electron density of the carboxylate group through the inductive effect. However, wave functional theory calculations presented herein reveal that the charge density of the carboxylate group is not explained by the inductive effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!