The special structure of eyes and the existence of various physiological barriers make ocular drug delivery one of the most difficult problems in the pharmaceutical field. Considering the problems of patient compliance, local administration remains the preferred method of drug administration in the anterior part of eyes. However, local administration suffers from poor bioavailability, need for frequent administration, and systemic toxicity. Administration in the posterior part of the eye is more difficult, and intravitreal injection is often used. But intravitreal injection faces the problems of poor patient compliance and likely side effects after multiple injections. The development of nanocarrier technology provides an effective way to solve these problems. Among them, liposomes, as the most widely used carrier in clinical application, have the characteristics of amphiphilic nanostructure, easy surface modification, extended release time, good biocompatibility, etc. The liposomes are expected to overcome obstacles and effectively deliver drugs to the target site to improve ocular drug bioavailability. This review summarized the various controllable properties of liposomes for ocular delivery as well as the application and research progress of liposomes in various ocular diseases. In addition, we summarized the physiological barriers and routes of administration contained in eyes, as well as the prospects of liposomes in the treatment of ocular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1116/6.0004159 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!