Background: Pulmonary ischemia-reperfusion injury (PIRI) is a major cause of fatality post-lung transplantation. Though some long non-coding RNAs (lncRNAs) have been studied in acute lung injury (ALI), their effects on PIRI remain undefined. The present study aims to explore the underlying mechanism of small nucleolar RNA host gene 16 (SNHG16) in PIRI.

Methods: PIR mouse and OGD/R cell models were established. Exosomes were extracted from human pulmonary microvascular endothelial cells (HPMECs). Functional and rescue experiments were conducted in OGD/R-exposed HPMECs, OGD/R-exposed pulmonary alveolar epithelial type II cells (AECs), and I/R model mice. The relationships among SNHG16, miR-372-3p/miR-373-3p, and MTCH2 were also verified using dual luciferase reporter assay, RNA pull-down and RIP assay.

Results: SNHG16 was downregulated in OGD/R-exposed HPMECs, and SNHG16 overexpression accelerated proliferation, angiogenesis, and ameliorated mitochondrial respiration in OGD/R-exposed HPMECs. HPMEC-derived exosomal SNHG16 suppressed OGD/R-induced type II AEC injury. SNHG16 ameliorated lung injury in PIR mice. Mechanistically, SNHG16 targeted and negatively regulated miR-372-3p and miR-373-3p expression, and MTCH2, a target gene of miR-372-3p/miR-373-3p. SNHG16 was found to upregulate MTCH2 expression not only in a miR-372-3p and miR-373-3p-dependent manner but also suppress ubiquitination induced MTCH2 degradation.

Conclusions: Our findings revealed that SNHG16 overexpression suppressed OGD/R-induced HPMEC apoptosis by promoting Warburg effect, and HPMEC-derived exosomal SNHG16 alleviated PIRI through the miR-372-3p/miR-373-3p/MTCH2 axis, suggesting that SNHG16 as a therapeutic target for PIRI.

Download full-text PDF

Source
http://dx.doi.org/10.1097/JS9.0000000000002217DOI Listing

Publication Analysis

Top Keywords

snhg16
12
ogd/r-exposed hpmecs
12
pulmonary ischemia-reperfusion
8
ischemia-reperfusion injury
8
promoting warburg
8
mtch2 expression
8
lung injury
8
snhg16 overexpression
8
hpmec-derived exosomal
8
exosomal snhg16
8

Similar Publications

Background: Pulmonary ischemia-reperfusion injury (PIRI) is a major cause of fatality post-lung transplantation. Though some long non-coding RNAs (lncRNAs) have been studied in acute lung injury (ALI), their effects on PIRI remain undefined. The present study aims to explore the underlying mechanism of small nucleolar RNA host gene 16 (SNHG16) in PIRI.

View Article and Find Full Text PDF

[Revision of Functionally Relevant and Widely Expressed Long Non-Coding RNAs].

Mol Biol (Mosk)

December 2024

Laboratory of Functional Genomics, Research Centre for Medical Genetics, Moscow, 115522 Russia.

Long non-coding RNAs (lncRNAs) are involved in many cellular processes while displaying high tissue specificity. In contrast, protein-coding genes, including the category of housekeeping ones, exhibit broad expression patterns. The aim of this study was to highlight the functional importance of widely expressed lncRNAs.

View Article and Find Full Text PDF

LncRNA SNHG16 Drives PD-L1-Mediated Immune Escape in Colorectal Cancer through Regulating miR-324-3p/ELK4 Signaling.

Biochem Genet

December 2024

Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 West Jiefang Road, Changsha, 410005, Hunan, People's Republic of China.

Colorectal cancer (CRC) is a common malignancy that claims the life of many patients. Nucleolar RNA host gene 16 (SNHG16) has been identified as an oncogene in CRC development. However, the role and mechanism of SNHG16 in CRC remain unclear.

View Article and Find Full Text PDF

Potential Diagnostic Markers of Diabetic Retinopathy: Serum LncRNA MIAT, HOTTIP, SNHG16.

Diabetes Metab Syndr Obes

November 2024

Ophthalmology Center, Suining Central Hospital, Suining, People's Republic of China.

Article Synopsis
  • The study investigates the levels of three long noncoding RNAs (lncRNAs)—MIAT, HOTTIP, and SNHG16—in the serum of patients with diabetic retinopathy (DR) to assess their diagnostic potential.
  • Researchers analyzed samples from 70 healthy controls and 195 Type 2 diabetes patients categorized with or without DR.
  • Results showed that while SNHG16 levels were significantly different compared to healthy controls, MIAT and HOTTIP did not differ in patients without retinopathy, suggesting that these lncRNAs could serve as potential markers for monitoring DR progression.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!