Heterogeneous dynamics in aging phosphate-based geopolymer.

J Chem Phys

Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, 58856 Telč, Czech Republic.

Published: January 2025

The time-evolution of dynamics as well as microstructure and mechanical response of phosphate-based geopolymers was probed using x-ray photon correlation spectroscopy and rheological tests. The analyzed relaxation processes in the freshly prepared geopolymer mixes evidenced a q-independent mode of the autocorrelation function, ascribed to density fluctuations of the already established molecular network, undergoing reconfiguration without significant mass transport. Upon curing, the detected motions are localized and depict a system evolving toward structural arrest dominated by slower hyperdiffusive dynamics, characterized by a compressed exponential regime, pointing to a structural relaxation process subjected to internal stresses, in a context of marked dynamical and structural heterogeneity. The system ages through a "densification" process producing declining small angle scattered intensity, as two finely intermixed gel-like reaction products, namely, one hydrated aluminophosphate and one hydrated silica, form a percolated network possessing surface fractal scaling of progressively shorter average correlation length. In this scenario, the nominal Al/P molar ratio of the mix, being an index of network-forming ability, is positively correlated with the dynamic viscosity and the overall kinetics, whereas the contrary occurs for the fraction of water.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0239498DOI Listing

Publication Analysis

Top Keywords

heterogeneous dynamics
4
dynamics aging
4
aging phosphate-based
4
phosphate-based geopolymer
4
geopolymer time-evolution
4
time-evolution dynamics
4
dynamics well
4
well microstructure
4
microstructure mechanical
4
mechanical response
4

Similar Publications

Soil imaging in the field and laboratory has greatly advanced our understanding of plant root systems. Soil fungi function as important plant symbionts and decomposers of complex organic material in soil environments. For fungal hyphae, however, the application of soil imaging remains scarce, limiting our understanding of hyphal systems in soil.

View Article and Find Full Text PDF

Frameshifting is an essential mechanism employed by many viruses including coronaviruses to produce viral proteins from a compact RNA genome. It is facilitated by specific RNA folds in the frameshift element (FSE), which has emerged as an important therapeutic target. For SARS-CoV-2, a specific 3-stem pseudoknot has been identified to stimulate frameshifting.

View Article and Find Full Text PDF

A tough soft-hard interface in the human knee joint driven by multiscale toughening mechanisms.

Proc Natl Acad Sci U S A

January 2025

Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.

Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.

View Article and Find Full Text PDF

Transketolase promotes osteosarcoma progression through the YY1-PAK4 axis.

FEBS J

January 2025

Department of Orthopedics, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Osteosarcoma, a malignant bone tumor that occurs in adolescents, proliferates and is prone to pulmonary metastasis. Osteosarcoma is characterized by high genotypic heterogeneity, making it difficult to identify reliable anti-osteosarcoma targets. The genotype of osteosarcoma may be highly dynamic, but its high dependence on energy remains constant.

View Article and Find Full Text PDF

Background: Healthy individuals demonstrate considerable heterogeneity upon dynamic quantitative sensory testing assessment of endogenous pain modulatory mechanisms. For those who stratify into a 'pro-nociceptive profile' cohort, consisting of inefficient conditioned pain modulation (CPM) and elevated temporal summation of pain (TSP), the optimal approach for balancing the net output of pain modulatory processes towards anti-nociception remains unresolved. In this translational healthy human and rat study, we examined whether descending modulation countered spinal amplification during concurrent application of a CPM and TSP paradigm alongside pupillometry since pontine activity was previously linked to functionality of endogenous pain modulatory mechanisms and pupil dilation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!