Background: The default-mode network (DMN) consists of brain regions with higher resting activity levels. Amyloid-β (Aβ) deposition in Alzheimer's disease (AD) occurs predominantly throughout the DMN, suggesting that activity within the network may facilitate disease processes. Indeed, increased neural activity is positively associated with Aβ production. In this context, variations in DMN activity and associated metabolic networks may be linked to the risk of developing AD. However, how patterns of metabolic disruption relate to the progression of AD pathology remains unknown. Here, we investigated whether the metabolic brain networks (MBNs) architecture predicts clinical conversion in cognitively unimpaired (CU) individuals.
Method: We selected CU individuals negative to amyloid and tau (A-T-) from the ADNI cohort with [F]FDG-PET imaging data at baseline. These patients were divided in stable (non-converters, n = 18) and clinical progressors (converters, n = 22). Individuals were age- and APOEε4-matched (Table 1). The mean [F]FDG standard uptake value ratio (SUVR, pons as reference) of brain regions of interest (ROIs) was extracted based on the DKT atlas. MBNs were assembled with a multiple sampling bootstrap scheme and corrected for group imbalance with the Adaptive Synthetic Sampling Approach for Imbalance (ADASYN) and for multiple comparisons using FDR (p < 0.05).
Result: [F]FDG regional SUVRs presented no differences between groups (Figure 1). However, converters had a prominent brain PET metabolic hyperconnectivity compared to non-converters, with a 1.5 fold-change in connection density (p < 0.001, Figure 2A). Notably, this hyperactivation was not limited to the ROIs comprising the DMN; MBNs constructed with all brain regions reveal that the brains of converters typically display metabolic hyperactivity before the onset of CI (Figure 2B).
Conclusion: Our findings suggest the existence of early metabolic alterations at the network level in amyloid negative converters. This corroborates the notion that early soluble forms of amyloid, considered synaptoxins, may trigger brain metabolic hyperconnectivity. MBNs hold promise as biomarkers for detecting individuals at risk of clinical progression, even before amyloid positivity status.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/alz.092872 | DOI Listing |
Alzheimers Res Ther
January 2025
Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
Background: Quantitative susceptibility mapping (QSM) can study the susceptibility values of brain tissue which allows for noninvasive examination of local brain iron levels in both normal and pathological conditions.
Purpose: Our study compares brain iron deposition in gray matter (GM) nuclei between cerebral small vessel disease (CSVD) patients and healthy controls (HCs), exploring factors that affect iron deposition and cognitive function.
Materials And Methods: A total of 321 subjects were enrolled in this study.
Background: Antibiomania is the manifestation of manic symptoms secondary to taking an antibiotic, which is a rare side effect. In these cases, the antibiotics most often incriminated are macrolides and quinolones, but to our knowledge, there are no published cases of antibiomania secondary to cotrimoxazole. Furthermore, we also provide an update of pharmacovigilance data concerning antibiomania through a search of the World Health Organization (WHO) database.
View Article and Find Full Text PDFBMC Gastroenterol
January 2025
Department of Gastroenterology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, Szczecin, 71-254, Poland.
Background: Functional gastrointestinal disorders (FGIDs), now known as disorders of gut-brain interaction (DGBIs), such as Irritable Bowel Syndrome (IBS) and Functional Dyspepsia (FD), significantly impact global health, reducing quality of life and burdening healthcare systems. This study addresses the epidemiological gap in Poland, focusing on the West Pomeranian Voivodeship.
Methods: We conducted a cross-sectional study of 2070 Caucasian patients (58.
J Headache Pain
January 2025
Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
Inter-individual variability in symptoms and the dynamic nature of brain pathophysiology present significant challenges in constructing a robust diagnostic model for migraine. In this study, we aimed to integrate different types of magnetic resonance imaging (MRI), providing structural and functional information, and develop a robust machine learning model that classifies migraine patients from healthy controls by testing multiple combinations of hyperparameters to ensure stability across different migraine phases and longitudinally repeated data. Specifically, we constructed a diagnostic model to classify patients with episodic migraine from healthy controls, and validated its performance across ictal and interictal phases, as well as in a longitudinal setting.
View Article and Find Full Text PDFNeuropsychopharmacology
January 2025
Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Frederiksberg, Denmark.
Individuals with bipolar disorder (BD) show heterogeneity in clinical, cognitive, and daily functioning characteristics, which challenges accurate diagnostics and optimal treatment. A key goal is to identify brain-based biomarkers that inform patient stratification and serve as treatment targets. The objective of the present study was to apply a data-driven, multivariate approach to quantify the relationship between multimodal imaging features and behavioral phenotypes in BD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!