Background: Alzheimer's disease (AD) is a highly complex neurological disorder, with Late-Onset AD (LOAD) being its most common form. INPP5D has been identified as a risk gene for AD and is involved in the TREM2 signaling pathway, which is crucial for microglial activity. INPP5D encodes SHIP1, a protein phosphatase that disrupts TREM2 signaling by converting PIP3 into PIP2, thereby inhibiting the PI3K-mediated activation of Akt-dependent signaling, which is essential for the clearance of amyloid oligomers, fibrils, and plaques. SHIP1 is a large, multidomain protein, and many aspects of its structure and function are poorly understood.

Method: We have expressed, purified, and characterized the kinetic and biophysical properties of various domain constructs of SHIP1 to better understand the roles of individual domains. Ongoing work involves screening of inhibitors using a range of biochemical and biophysical assays with different constructs of SHIP1.

Result: The response of different SHIP1 domain constructs with different substrates surprisingly revealed no significant differences in kinetic parameters between different domain constructs with the same substrate suggesting that the various domains surrounding the catalytic domain do not influence catalysis in solution. However, use of a designed chemical probe with a covalent warhead that targets SHIP1 allosterically between the catalytic and C2 domains shows significant inhibition of SHIP1 (in the absence of its SH2 domain) identifying a potential druggable site. X-ray crystallography was used to confirm the binding pose within this site. Binding affinity with additional compounds has been determined for different domain constructs using enzyme kinetics and biophysical methods including Microscale Thermophoresis (MST) and Differential Scanning Fluorescence (DSF).

Conclusion: SHIP1 is highly active in vitro (solution) without much regulation of its catalytic activity by surrounding domains. A potential druggable site has been identified between the SHIP1 catalytic and C2 domains that can be targeted allosterically by small molecule compounds. These discoveries will aid in identifying new molecules that can inhibit SHIP1 as a potential therapeutic target for AD. This research was supported by grant 1U54 AG065181 (IUSM-Purdue TREAT-AD Center) from the National Institute of Aging, National Institutes of Health.

Download full-text PDF

Source
http://dx.doi.org/10.1002/alz.095377DOI Listing

Publication Analysis

Top Keywords

domain constructs
16
ship1
9
trem2 signaling
8
catalytic domains
8
potential druggable
8
druggable site
8
domain
6
constructs
5
domains
5
developing topics
4

Similar Publications

Objectives: Freezing of Gait (FOG) is one of the disabling symptoms in patients with Parkinson's Disease (PD). While it is difficult to early detect because of the sporadic occurrence of initial freezing events. Whether the characteristic of gait impairments in PD patients with FOG during the 'interictal' period is different from that in non-FOG patients is still unclear.

View Article and Find Full Text PDF

Background: Calmodulin-binding transcription activator (CAMTA) proteins play significant roles in signal transduction, growth and development, as well as abiotic stress responses, in plants. Understanding their involvement in the low-temperature stress response of teak is vital for revealing cold resistance mechanisms.

Results: Through bioinformatics analysis, the CAMTA gene family in teak was examined, and six CAMTA genes were identified in teak.

View Article and Find Full Text PDF

The significance of ALKBH5 in erasing mRNA methylation in mRNA biogenesis, decay, and translation control has emerged as a prominent research focus. Additionally, ALKBH5 is associated with the development of numerous human cancers. However, it remains unclear whether ALKBH5 regulates the growth and metastasis of papillary thyroid carcinoma (PTC).

View Article and Find Full Text PDF

Active site-inspired multicopper laccase-like nanozymes for detection of phenolic and catecholamine compounds.

Anal Chim Acta

January 2025

School of Medical Devices, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China. Electronic address:

Phenolic compounds are typical organic pollutants which cause severe human health problems due to their teratogenesis, carcinogenesis, neurotoxicity, immunotoxicity and endocrine disruption. Natural laccase is a multicopper oxidase existing in bacteria, plants, and insects, which can accelerate the transformation of phenolic compounds to their less hazardous oxidized products under mild conditions without harmful byproducts. Despite eco-environmentally friendly property of laccase, it still faces constraints of widespread application attribute to its high cost, complex preparation, and vulnerability.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are porous, ordered arrays formed by coordination bonds between organic ligands and metal ions or clusters. The highly tunable properties of the MOF structure and performance make it possible to meet the needs of many applications. Conductive MOFs are essential in the domain of sensing due to their electrical conductivity, porosity, and catalytic properties, offering an effective platform for detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!