The development of Pd-based bimetallic nanoalloys (NAs) with abundant active sites for achieving highly efficient electrocatalysis in alcohol oxidation deserves continuous attention. Herein, we utilized a facile visible-light-assisted liquid-phase method involving adjusting reaction time to generate active sites, successfully synthesizing one-dimensional (1D) PdAg NAs rich in defects. The optimized 1D PdAg NA exhibits remarkable electrochemical activity, stability, and antipoisonous properties in glycerol oxidation reaction (GOR) and ethanol oxidation reaction (EOR), far exceeding pure Pd and commercial Pd/C catalysts. Notably, compared to glycerol oxidation (1496 mA mg and 4.13 mA cm), the optimized PdAg NA demonstrated higher mass activity (2990 mA mg ) and specific activity (7.86 mA cm) in ethanol oxidation. In summary, this work may provide a strategy for designing low-cost electrocatalysts enriched with defects, thereby promoting the development of high-performance alcohol oxidation reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202404172DOI Listing

Publication Analysis

Top Keywords

ethanol oxidation
12
rich defects
8
active sites
8
alcohol oxidation
8
optimized pdag
8
glycerol oxidation
8
oxidation reaction
8
oxidation
7
one-dimensional branched
4
pdag
4

Similar Publications

Although performance enhancements due to trace Fe incorporation into Ni catalysts for the oxygen evolution reaction (OER) have been well documented, the effects of trace versus bulk Fe incorporation into Ni catalysts for the ethanol oxidation reaction (EOR)─a promising anodic alternative to OER─are unclear. Herein, we perform extensive cyclic voltammetry experiments on Ni-based thin films to show that trace Fe incorporation from electrolyte impurities has a minimal impact on EOR performance, while codeposited Fe significantly suppresses catalytic current (by half at 1.5 V).

View Article and Find Full Text PDF

Background: Alcoholic liver disease (ALD) is a significant global health concern, primarily resulting from chronic alcohol consumption, with oxidative stress as a key driver. The ethyl acetate extract of (CGE) exhibits antioxidant and hepatoprotective properties, but its detailed mechanism of action against ALD remains unclear. This study investigates the effects and mechanisms of CGE in alleviating alcohol-induced oxidative stress and liver injury.

View Article and Find Full Text PDF

Background/objectives: Hyperlipidemia is a serious risk factor for cardiovascular diseases and liver steatosis. In this work, we explored the effect of an herbal formula (CBF) containing immature pods and extracts on lipid metabolism disorders and lipoprotein-rich plasma (LRP) oxidation in mice.

Methods: The phenolic composition was determined using HPLC-DAD analysis.

View Article and Find Full Text PDF

The large-scale implementation of 2D material-based membranes is hindered by mechanical stability and mass transport control challenges. This work describes the fabrication, characterisation, and testing of self-standing graphene oxide (GO) membranes cross-linked with oxides such as FeO, AlO, CaSO, NbO, and a carbide, SiC. These cross-linking agents enhance the mechanical stability of the membranes and modulate their mass transport properties.

View Article and Find Full Text PDF

Potential Mechanisms and Effects of Dai Bai Jie Ethanol Extract in Preventing Acute Alcoholic Liver Injury.

Curr Issues Mol Biol

December 2024

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.

This study investigated the protective effect of Dai Bai Jie (DBJ) extract against acute alcoholic liver injury (AALI) and elucidated its potential mechanism. The total saponin level in the DBJ extracts was measured using vanillin-chloroform acid colorimetry. To observe the preventive and protective effects of DBJ on AML-12 cells in an ethanol environment, the effective components of DBJ were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!