A mechanistic model for determining factors that influence inorganic nitrogen fate in corn cultivation.

Environ Sci Process Impacts

Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.

Published: January 2025

Conventional practices for inorganic nitrogen fertilizer are highly inefficient leading to excess nitrogen in the environment. Excess environmental nitrogen induces ecological (, hypoxia, eutrophication) and public health (, nitrate contaminated drinking water) consequences, motivating adoption of management strategies to improve fertilizer use efficiency. Yet, how to limit the environmental impacts from inorganic nitrogen fertilizer while maintaining crop yields is a persistent challenge. The lack of empirical data on the fate and transport of nitrogen in an agriculture soil-crop system and how transport changes under varying conditions limits our ability to address this challenge. To this end, we developed a mechanistic model to assess how various parameters within a soil-crop system affect where nitrogen goes and inform how we can perturb the system to improve crop nitrogen content while reducing nitrogen emissions to the environment. The model evaluates nitrogen transport and distribution in the soil-corn plant system on a conventional Iowa corn farm. Simulations determine the amount of applied nitrogen fertilizer acquired by the crop root system, leached to groundwater, lost to tile drainage, and denitrified. Through scenario modeling, it was found that reducing application rates from 200 kg ha to 160 kg ha had limited impact on plant nitrogen content, while decreasing wasted nitrogen fertilizer by 25%. Delayed application until June significantly increased the f-NUE and denitrification while reducing the amount of fertilizer leached and exported through tile drainage. The value in a model like the one presented herein, is the ability to perturb the system through manipulation of variables representative of a specific scenario of interest to inform how one can improve crop-based nitrogen management.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4em00566jDOI Listing

Publication Analysis

Top Keywords

nitrogen fertilizer
16
nitrogen
14
inorganic nitrogen
12
mechanistic model
8
soil-crop system
8
perturb system
8
nitrogen content
8
tile drainage
8
fertilizer
6
system
6

Similar Publications

A mechanistic model for determining factors that influence inorganic nitrogen fate in corn cultivation.

Environ Sci Process Impacts

January 2025

Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.

Conventional practices for inorganic nitrogen fertilizer are highly inefficient leading to excess nitrogen in the environment. Excess environmental nitrogen induces ecological (, hypoxia, eutrophication) and public health (, nitrate contaminated drinking water) consequences, motivating adoption of management strategies to improve fertilizer use efficiency. Yet, how to limit the environmental impacts from inorganic nitrogen fertilizer while maintaining crop yields is a persistent challenge.

View Article and Find Full Text PDF

Nondestructively-measured leaf ammonia emission rates can partly reflect maize growth status.

Plant Physiol Biochem

January 2025

School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Engineering Research Center of Environmentally-friendly and Efficient Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China. Electronic address:

A deep understanding of ammonia (NH) emissions from cropland can promote efficient crop production. To date, little is known about leaf NH emissions because of the lack of rapid detection methods. We developed a method for detecting leaf NH emissions based on portable NH sensors.

View Article and Find Full Text PDF

Improving future agricultural sustainability by optimizing crop distributions in China.

PNAS Nexus

January 2025

Department of Geosciences and Natural Resource Management, University of Copenhagen, DK-1350 Copenhagen, Denmark.

Improving agricultural sustainability is a global challenge, particularly for China's high-input and low-efficiency cropping systems with environmental tradeoffs. Although national strategies have been implemented to achieve Sustainable Development Goals in agriculture, the potential contributions of crop switching as a promising solution under varying future climate change are still under-explored. Here, we optimize cropping patterns spatially with the targets of enhancing agriculture production, reducing environmental burdens, and achieving sustainable fertilization across different climate scenarios.

View Article and Find Full Text PDF

Water-saving irrigation and the mixed application of controlled-release nitrogen fertilizer (CRNF) and common urea (CU; with a higher nitrogen release rate) have shown promise in improving rice yield with high resource use efficiency. However, the physiological mechanism underlying this effect remains largely unknown. This study involved a field experiment on rice in Jingzhou City, Central China, in 2020 and 2021.

View Article and Find Full Text PDF

The aim of the research was to determine the impact of the use of biostimulators and different nitrogen doses on the yield quality of two varieties of corn grown for grain. The field experiment was carried out in 2015-2017 on an individual farm located in north-eastern Poland (52°30'N and 22°26'E). The following factors were examined in the experiment: group I-two corn varieties: PR38N86 (280 FAO); P8400 (240 FAO) group II-four doses of nitrogen fertilization: control treatment-without nitrogen application (0 kg·ha-1 N) nitrogen doses-80 kg·ha-1 N, 120 kg·ha-1 N, 160 kg·ha-1 N, group III-four types of biostimulators used: (1) control treatment-without the use of a biostimulator, (2) biostimulator containing sodium ortho-nitrophenol, sodium para-nitrophenol, 5-nitroguaiacol sodium, (3) biostimulator containing potassium para-nitrophenolate, potassium ortho-nitrophenolate, potassium 5-nitrovacollate, (4) biostimulator containing molybdenum, zinc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!