Atomic force microscopy (AFM) has recently received increasing interest in molecular biology. This technique allows quick and reliable detection of biomolecules. However, studying RNA-protein complexes using AFM poses significant challenges. Here, we describe a simple and reliable method to visualize positively charged proteins bound to RNA that does not require metallic cations. This method allowed us to effectively detect and visualize Staufen-RNA complexes by height or logarithmic stiffness. The study of the mechanical properties is particularly important in the case of protein-coated RNA complexes, where RNA cannot be detected by height channel. In any case, it is necessary to compare AFM data with the data derived from other techniques like nuclear magnetic resonance, X-ray crystallography, cryogenic electron microscopy, and small-angle X-ray scattering. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Preparation and visualization of RNA-protein complex.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpz1.70084DOI Listing

Publication Analysis

Top Keywords

visualization rna-protein
8
rna-protein complexes
8
atomic force
8
force microscopy
8
simple protocol
4
protocol visualization
4
complexes
4
complexes atomic
4
microscopy atomic
4
microscopy afm
4

Similar Publications

Atomic force microscopy (AFM) has recently received increasing interest in molecular biology. This technique allows quick and reliable detection of biomolecules. However, studying RNA-protein complexes using AFM poses significant challenges.

View Article and Find Full Text PDF

Optimization of Existing RNA Visualization Methods Reveals Novel Dendritic mRNA Dynamics.

Front Biosci (Landmark Ed)

December 2024

Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.

Background: Spatial-temporal control of mRNA translation in dendrites is important for synaptic plasticity. In response to pre-synaptic stimuli, local mRNA translation can be rapidly triggered near stimulated synapses to supply the necessary proteins for synapse maturation or elimination, and 3' untranslated regions (UTRs) are responsible for proper localization of mRNAs in dendrites. Although is a robust technique for analyzing RNA localization in fixed neurons, live-cell imaging of RNA dynamics remains challenging.

View Article and Find Full Text PDF

A protocol for in vivo RNA labeling and visualization in tobacco pollen tubes.

STAR Protoc

December 2024

Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague, Czech Republic. Electronic address:

Here, we present a protocol for labeling and live visualization of RNA-protein complexes in the form of ribonucleoprotein particles (RNPs) in tobacco pollen tubes. We describe steps for constructing RNA-pp7/MS2 tag and biolistic gene-gun-mediated pollen transformation. We then provide detailed procedures for RNA labeling using PP7 aptamer nascent RNA tagging and a fluorescently labeled Pseudomonas aeruginosa PP7 bacteriophage coat protein (PCP) reporter that binds to PP7 RNA stem loops.

View Article and Find Full Text PDF

Ribosomes are macromolecular RNA-protein complexes that constitute the central machinery responsible for protein synthesis and quality control in the cell. Ribosomes also serve as a hub for multiple non-ribosomal proteins and RNAs that control protein synthesis. However, the purification of ribosomes and associated factors for functional and structural studies requires a large amount of starting biological material and a tedious workflow.

View Article and Find Full Text PDF

PAR-dCLIP: Enabling detection of RNA binding protein target transcripts bound at 5' termini through the incorporation of a decapping step.

Methods Enzymol

October 2024

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States. Electronic address:

RNA binding proteins (RBPs) are responsible for facilitating a wealth of post-transcriptional gene regulatory functions. The role of an RBP on regulated transcripts can be investigated through a pull-down of the RBP and high-throughput sequencing (HTS) of the associated transcripts. Photoactivatable Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP), is one such pull-down method that isolates, detects, and sequences the cDNA of RBP-associated transcripts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!