Flux through membrane channel: linear transport single-molecule approaches.

Phys Chem Chem Phys

Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.

Published: January 2025

One of the most subtle steps in the single-molecule approach to the flux through the membrane channel, which uses the one-dimensional Smoluchowski equation, is to describe the molecule's "behavior" at the contacts between the channel openings and the bulk. Earlier, to handle this issue, we introduced the so-called "radiation boundary conditions" that account for the interplay between the two types of trajectories of the molecules starting at the openings, specifically, the ones that eventually return to the channel and the ones that escape to infinity. The latter trajectories represent the true translocation events on the condition that initially the molecule entered the channel from the opposite side. Here, we demonstrate that the single molecule approach based on the one-dimensional Smoluchowski equation with radiation boundary conditions leads to the same expression for the flux through the channel as the conventional approach based on the linear transport theory.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp04109gDOI Listing

Publication Analysis

Top Keywords

flux membrane
8
membrane channel
8
linear transport
8
one-dimensional smoluchowski
8
smoluchowski equation
8
approach based
8
channel
6
channel linear
4
transport single-molecule
4
single-molecule approaches
4

Similar Publications

Pulsatile ion transport facilitates the adjusted transfer of substances, meeting the requirements for the gradient and timed separation of multiple components in membrane processes. Responsive nanofiltration membranes are thus currently receiving widespread attention but face limitations due to their narrow performance adjustment range. Herein, hydroxyl functional groups were introduced into electrically responsive nanofiltration membranes to broaden the adjustment range of separation performance through a combination of pore size sieving and functional group interactions, resulting in a greater change in rejection and flux compared to the original membrane.

View Article and Find Full Text PDF

Biomimetic 3D Prototyping of Hierarchically Porous Multilayered Membranes for Enhanced Oil-Water Filtration.

ACS Appl Mater Interfaces

January 2025

Associate Professor of Mechanical Engineering, College of Engineering, University of Georgia (UGA), 302 E. Campus Rd., Athens 30602, United States.

This study introduces a biomimetic approach to 3D printing multilayered hierarchical porous membranes (MHMs) using Direct Ink Writing (DIW) technology. Fabricated through a fast layer-by-layer printing process with varying concentrations of pore-forming agents, the produced MHMs mimic the hierarchical pore structure and filtration capabilities of natural soil systems. As a result, the 3D-printed MHMs achieved an impressive oil rejection rate of 99.

View Article and Find Full Text PDF

In recent years, formic acid (FA) has garnered attention as a compelling molecule for various chemical and everyday applications Additionally, with recent studies demonstrating direct FA generation through CO2 electrolysis, it can serve as a stable liquid hydrogen carrier. Nevertheless, FA-permeability via semi-permeable ion‑exchange membranes (FA-crossover) still constitutes a major issue in scalable polymer-electrolyte separated zero-gap electrolyzers, limiting the breakthrough of the technology to the larger-scale. Herein we present a holistic route towards understanding the mechanism of FA-crossover in zero-gap cells.

View Article and Find Full Text PDF

CprA is a short-chain dehydrogenase/reductase (SDR) that contributes to resistance against colistin and antimicrobial peptides. The cprA gene is conserved across Pseudomonas aeruginosa clades and its expression is directly regulated by the two-component system PmrAB. We have shown that cprA expression leads to the production of outer membrane vesicles (OMVs) that block autophagic flux and have a greater capacity to activate the non-canonical inflammasome pathway.

View Article and Find Full Text PDF

Hyperbranched polyester amide/polyethersulphone mixed matrix nanofiltration membranes for contaminant rejection.

RSC Adv

January 2025

Packing and Packaging Materials Department, Institute of Chemical Industries Research, National Research Centre 33 El Behooth St., Dokki Giza Egypt +20 2 33371718.

Nanofiltration (NF) separation technology is a low-pressure filtration process, which is highly efficient and environmentally friendly. As a result, it has found wide application in water treatment. This work describes the preparation of flat sheet membranes the phase inversion method using blends of hyperbranched polyester amide (PEA) and polyether sulphone (PES) in definite ratios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!